Using Societal Issues to Recruit and Retain STEM Students

The ideas and information on this page are derived from presentations at the Using Societal Issues to Recruit and Retain STEM Students Workshop, held at Grinnell College in July 2015.

Jump to: High Impact Practices | Challenges and Opportunities | Additional Resources

Societal issues are a powerful way to engage students in STEM and transcend disciplinary boundaries. Regardless of their major, teaching about topics such as energy, food, water, and hazards, are applicable to what students learn in the classroom across the curriculum and may apply to their personal life and/or what they see in the news. Further, there is an increasing need for not only STEM literacy, but also an interdisciplinary approach to addressing the complex issues facing society such as environmental justice, sustainability, and environmental ethics. Real-world issues can engage and energize students and offer an opportunity to go out into the community to apply classroom knowledge and perform hands-on work. Engaged, student-centered pedagogy using societal issues can motivate students to take action in their community through the use of community partnerships, place-based approaches, research projects. The resources below offer information about how to use societal issues to engage students as well as example activities and courses that can be used to incorporate societal issues into the classroom.

Students often feel a strong tie to their home communities/cities. Students may feel that there are challenges that they cannot meet when they enter STEM fields like the potential of having to move far away to find a job or interesting research areas. Many URM, 1st generation, and non-traditional students are tied to their communities in ways that traditional students are not. They have jobs, families, pressures to get a good job to support their extended families, other commitments, etc. that hold them to their community. By making learning relevant to their home communities (i.e. the community surrounding campus), faculty can help to reduce the perceived challenges and can help attract these students.

Societal Issues Promote Self-Efficacy, Establish Relevance, and Drive Motivation

Making engagement with society a fundamental and intentional part of high quality learning as well as involving projects in a social context allows students learn in their own cultural context provides a motivation for and improves the quality of learning. Incorporating societal issues into instruction also encourages and provides mechanisms for students to see themselves as key players in learning and projects that are relevant to their lives, improves their sense of self-efficacy. Further, featuring social projects as part of the institutional mission helps students to see themselves as part of efforts which they value and motivates them to engage.

High Impact Practices

There is substantial evidence that students do better (in terms of learning and persistence) with high impact practices, learning in a social context and service learning and that is particularly true of underrepresented minority, first-generation, transfer, and low-income students. (G Kuh, High Impact Practices). The National Survey of Student Engagement (NSSE) identified five high impact practices (NSSE 2016):

  • Learning Communities
  • Service Learning or other courses with a community-based project component
  • Study Abroad Experiences
  • Internships Capstone courses or culminating senior experiences
  • Research with a faculty member
A 2013 AAC&U report, using NSSE data from 25,336 students at 38 institutions across state higher education systems in California, Oregon, and Wisconsin, found that there was a general positive upward trend in perceived learning gains with the number of high impact practices the study group participated in, suggesting that encouraging students to do multiple high impact practices is beneficial to their learning among these high impact practices. In addition, it found that service learning and student-faculty research experiences showed the highest average perceived learning gains of the high impact practices; these two practices are explored in a bit more detail below. (Finley and McNair, 2013).

Service Learning

Service learning projects can be implemented in a variety of ways and can be smaller projects that are a part of a course, the main focus of or culminating project of a course, or as a capstone project for a degree program. These projects not only provide a hands-on way for students to apply their classroom knowledge to solving real-world problems, but also have the benefit of bridging students with the local community to make a positive impact. Workshop participants offered the following advice for setting up service learning projects:

  • Work with colleagues to develop a document that lays out all the requirements for a service capstone.
    • Consider working in teams to advise teams of students who collaborate on a project.
    • Explore the use of alumni as resources.
    • Address their concerns about rigor by explaining how these projects add value, rather than replacing rigor with service, and jointly developing expectations for disciplinary competency.
  • Develop the details of course structure, possibly as a syllabus.
    • How will projects be selected?
    • Learning goals and outcomes.
    • Course assignments, structure, and grading.
    • Assessment.
  • Develop a framework for talking to community service partners about the types of projects our students could do.
    • Tell partners what our expectations are for them, and let them convey their expectations, in a 1-page Memorandum of Understanding to which they contribute.
      • (i) Let our partners know that we are not providing students to do common office tasks – "We want to help you solve a problem." Convey the importance of the disciplinary rigor that is necessary for project success.
      • (ii) Tasks should not be mission-critical, because these are undergraduates.
      • (iii) Give partners clear expectations for the time frame of key development steps during the project.
      • (iv) Tell partners when they will learn the outcomes of any data collection and analysis.
      • (v) Ensure that students understand how to communicate appropriately with partners (e.g., don't text partners at 2 am).
    • Identify and network with other offices at our own institutions who can work with us (staff who coordinate volunteers, career offices, service groups).
      • (i) Give them talking points that they can use to identify possible partners who would be a good fit.
      • (ii) Invite them to visit your class to talk about what that office does.
  • Develop a framework for talking with students to set up expectations and build toward future success by working through the necessary components of a successful capstone.
    • Identify the disciplinary components of the capstone.
    • Delineate the service components.
    • Help students understand and learn to articulate what transferable skills this project will develop.
    • Guide students to make explicit how this deepens their understanding of the discipline and its connections to broader societal issues.
  • Identify funding needs and sources.
    • Sell it to the administration by pointing out ties to career/future employment, communications, alumni relationships, recruitment, and retention.
    • Seek outside funding through organizations (e.g. NSF, private foundations, using an operating budget, Carnegie Foundation, HHMI, local foundations, local industry)
Resources with Guidance on Designing Service Learning Projects and Example Projects
  • Service Learning from Pedagogies in Action, which explains what service learning is, why and how to use it, and provides example projects that can be adopted or adapted for your course.
  • Service Learning: Connect Classroom Learning with Societal Issues, from InTeGrate, provides pedagogic guidance, implementation strategies, and example projects that highlight service learning applications to societal issues.
  • Service Learning in the Geosciences from On the Cutting Edge, which provides advice and resources for creating service learning projects. While geared toward the geosciences, much of the information is relevant and applicable across disciplines.

Faculty as Mentors for Research

Similar to service learning projects, delving into research projects and case studies provide a mechanism to engage students in STEM and to increase the relevance of their education through applying their classroom knowledge to exploring and solving real-world problems. Further, these experiences can give students experience they can document on their resume, which can include quantitative and analytic skills (e.g. working with Excel, statistics, etc.), communication skills (e.g. giving a presentation to the community or at a conference), and familiarize them and give hands on experience with instrumentation. These experiences can also illustrate pathways to the workforce and the variety of career options a degree in STEM can provide (described further by the SAGE project). Students can be engaged at all levels, and this may also help to recruit students to continue their academic pursuits. For instance, the University of Texas at El Paso has a program that provides local high school and 2YC students research experiences. This program is designed to recruit and support minority students and provide them a view of the rich career opportunities a degree in Geosciences offers, including those beyond field work.

Resources with Guidance on Designing Undergraduate Research Projects and Example Projects

Undergraduate Research from Pedagogies in Action, which explains what undergraduate research projects are, why and how to use them, and provides examples from fellow faculty that can be adopted or adapted for your course.

Challenges and Opportunities

Workshop participants brainstormed about common challenges to recruiting and retaining STEM students and implementing high impact practices such as service learning and research experiences as well as potential solutions to overcome these barriers.

Recruiting students - Hold information sessions for students, providing incentives such as food or extra credit, and recruit students from there. This can also help bring in broader engagement and participation.

Maintaining student engagement and involvement - Offer incentives such as gift cards from local businesses (McDonald's, etc.), as well as asking for support from publishers (Pearson, etc.). There could be rewards provided to students who had attended the most meetings; or for student presentations if students participate in service learning or conference-like events. Also consider having student participants from summer research programs come back and talk to the STEM club students about their experiences, etc. This provides a great opportunity for building leadership skills for the student presenters and provides role-models and examples to STEM club students to see their peers being successful and introducing them to the idea of summer research programs (REUs).

Overcoming faculty time constraints - Faculty and faculty sponsors are often busy with teaching loads, service commitments, personal commitments, and sometimes research obligations. Partnering with extracurricular clubs, faculty across departments, and including a team of leaders - both students and faculty - can help distribute the work load and also brings perspectives and experiences from multiple people. Partnering with community groups or national organizations can also help in this endeavor and further builds a network that students can use for support and potential career pathways.

Getting funding necessary to build and maintain projects and programs - Funding can be a major limiting factor for programming and projects. Seek funding through both institutional and external resources. Sell these ideas to the administration by pointing out ties to career/future employment, communications, alumni relationships, recruitment, and retention. Funding can also be sought from external sources such as NSF, private foundations, Carnegie Foundation, Howard Hughes Medical Institution, local foundations, and local industry.

Dealing with rapid and frequent changes in institutional structure - This can make it hard to know who to work with in your own institution. Building cross-departmental and cross-institutional partnerships may be helpful in overcoming this challenge.

Overcoming barriers to changing curriculum, in getting departmental buy-in, and convincing others of the value of this work - Do a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis for your department; find successful examples from sources such as Building Strong Departments, from SAGE 2YC, and from InTeGrate program descriptions. In addition, this page on Strengthening Career Preparation Across Programs may provide ideas; while geoscience-focused, it can be adapted to other STEM disciplines.

Justifying the expense to administrators, especially if funding must be provided for research or other project-related expenses - Look for successful examples that you can use to market your ideas, such as workforce preparation, strengthening community connections/partnerships, recruiting students, etc. (as suggested above).

Identifying appropriate means to assess learning and efficacy - See example projects from Pedagogies in Action and On the Cutting Edge for assessment ideas that you can adopt wholesale or adapt to your project.

Other ideas for engaging students and establishing a network of support include:

  • Partnering with local USGS, USFS, State Forest Service, State Geological Service, etc. professionals who live and work in the area (for research opportunities, etc.).
  • Bringing in guest speakers from the area.
  • Building a partnership with a local business or consulting firm.
  • Using the land around campus to conduct labs and research Campus-Based Learning.

While many challenges may exist, there are many examples of programs that have overcome similar barriers. Don't give up - learn from others' experience.

Additional Resources

Get inspired - explore ideas from related projects:

Go to http://serc.carleton.edu/sencer/index.html
SENCER offers example courses and programs that connect science, technology, engineering, and mathematics content to critical local, national, and global challenges. Resources include model courses and project and backgrounders on particular topics. Students and faculty report that the SENCER approach makes science more real, accessible, "useful," and civically-important.

Go to /sisl/index.html
Sustainability Improves Student Learning (SISL) - SISL is an alliance of disciplinary societies working to leverage their membership to improve teaching and prepare undergraduates to address real-world sustainability challenges. Explore interdisciplinary teaching resources that incorporate sustainability-related issues into the classroom.

Go to /NAGTWorkshops/affective/environment.html
Teaching Environmental Issues and the Affective Domain (from On the Cutting Edge The Affective Domain in the Classroom) - This web page offers some strategies to teach environmental topics, particularly controversial ones, without coming up against affective barriers to learning. The page also offers a collection of examples, teaching methods that work well with teaching about controversial environmental issues, and a list of related links and resources for further information.

Go to /NAGTWorkshops/climatechange/index.html
Teaching Climate Change (from On the Cutting Edge) - This site allows educators to locate and use the best resources for teaching about Earth's climate system and the changing climate over the past one million years. Here you will find teaching activities, courses, workshop outcomes, teaching ideas and links to useful teaching resources.

Go to /NAGTWorkshops/energy/index.html
Teaching about Energy in Geoscience Courses (from On the Cutting Edge)- Energy plays a big role in current climate science, as well as in policy and economics as it relates to climate change. This website contains course descriptions, an activity collection, visualizations, recommended books and websites, workshop outcomes and more.

Go to /NAGTWorkshops/complexsystems/index.html
Developing Student Understanding of Complex Systems (from On the Cutting Edge) - This collection begins with a detailed explanation of the characteristics of a complex system which include many interdependent variables, feedback loops, chaotic behavior, etc. The collection also presents pedagogical strategies, activities, and course descriptions, essays and much more about addressing complex systems.

Go to /NAGTWorkshops/publicpolicy/activities.html
Teaching Public Policy in the Earth Sciences (from On the Cutting Edge) - Presents information and activities on incorporating public policy issues into science courses. Includes an extensive list of web resources and several examples of role playing scenarios that are useful for teaching about public policy.

Go to /integrate/teaching_materials/index.html
InTeGrate: Interdisciplinary Teaching about Earth for a Sustainable Future, is an NSF STEP Center project that aims to educate a diverse citizenry about the contribution of geoscience to the grand challenges facing society, particularly resource and environmental issues. The project has developed curricula designed to increase geoscience literacy of all undergraduate students- both geoscience majors and non-majors, those who are historically under-represented in the geosciences, and future K-12 teachers, such that they are better positioned to make sustainable decisions in their lives and as part of the broader society. Explore these resources, including:

Go to /integrate/teaching_materials/energy.html
Teaching about Energy - From the InTeGrate project, explore the abundant opportunities to incorporate sustainability themes into the classroom with tips for integrating energy concepts into the classroom along with example activities and courses. Energy topics are a natural fit with related themes in sustainability such as climate change, water, human population and policy. Energy concepts span the geosciences, engineering and technology, economics, policy and more.

Go to http://serc.carleton.edu/integrate/teaching_materials/water.html
Teaching about Water (e.g. quality and quantity, economics) – From the InTeGrate project, topics related to water transcend just about all fields of study including the sciences, human health, sociology, environmental justice, and philosophy. There are numerous pathways to introduce water and sustainability themes into a wide range of contexts. Examples include: water availability, water management, water rights, and water quality. Explore themes and strategies for integrating water topics in the classroom from these teaching materials.

Go to /integrate/teaching_materials/food.html
Teaching about Food (e.g. production and security, availability, environmental impacts) - From the InTeGrate project, every student has a personal connection with food. Effective pedagogy will expand their thinking beyond their own "face value" experiences and consider the food supply from broader perspectives such as society, economics, environment and resource use. Explore themes and strategies for integrating food topics in the classroom and gain ideas from these teaching materials.

Go to /integrate/teaching_materials/nat_hazards.html
Teaching about Hazards - (natural and man-made risks, preparedness and planning, mitigation and adaptation) - From the InTeGrate project, explore opportunities to engage students with real-world challenges related to natural hazards. Explore a collection of activities and courses. Whether students experience hazards first-hand or not, they are likely to know someone who is affected by a hazard or to learn about hazards through the media or social media. The resources in these pages highlight teaching the different facets of sustainability, risk, and resilience by utilizing hazards - past, present, and future.