Teaching Activities
Earth education activities from across all of the sites within the Teach the Earth portal.
Online Readiness
Resource Type: Activities
Subject Show all
Environmental Science > Natural Hazards > Earthquakes
11 matchesActivity Review
Project Show all
- Teaching Materials 11 matches
GETSI
Results 1 - 10 of 11 matches
Unit 2: Earthquakes, GPS, and Plate Movement part of Measuring the Earth with GPS
Karen M. Kortz (Community College of Rhode Island)
Jessica J. Smay (San Jose City College)
GPS data can measure bedrock motion in response to deformation of the ground near plate boundaries because of plate tectonics. In this module, students will learn how to read GPS data to interpret how the bedrock ...
Resource Type: Activities: Course Module, Activities
Subject: Geography:Geospatial, Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 1: Slip-sliding away: case study landslides in Italy and Peru part of Surface Process Hazards
Sarah Hall, College of the Atlantic; Becca Walker, Mt. San Antonio College
How have mass-wasting events affected communities, and what lessons have we learned from these natural disasters that might help us mitigate future hazards? In this unit, students answer these questions by being ...
Resource Type: Activities: Activities, Course Module, Activities:Classroom Activity:Short Activity:Think-Pair-Share
Subject: Geoscience:Geology:Geomorphology:Tectonic Geomorphology, Landforms/Processes:Mass Movement, Geoscience:Geology:Geophysics:Geodesy, Geoscience:Geology:Tectonics, Environmental Science:Sustainability, Natural Hazards:Mass Wasting, Earthquakes, Geography, Environmental Science:Natural Hazards
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 6: Applying GPS strain and earthquake hazard analyses to different regions part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu)
Phil Resor, Wesleyan University (presor@wesleyan.edu)
Students select their own set of three stations in an area of interest to them, conduct a strain analysis of the area between the stations, and tie the findings to regional tectonics and societal impacts in a 5–7 ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Structural Geology:Structural Visualizations, Stress/Strain/Strain Analysis, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geodesy, Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity, Geophysics and Structural Geology, Environmental Science:Natural Hazards:Earthquakes, Physics:General Physics:Vector Algebra, Geoscience:Geology:Environmental Geology, Tectonics, Geomorphology:Landscape Evolution, Geography:Geospatial, Physical
Activity Review: Passed Peer Review
Learn more about this review process.
Unit 4: GPS and infinitesimal strain analysis part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu)
Phil Resor, Wesleyan University (presor@wesleyan.edu)
Students work with GPS velocity data from three stations in the same region that form an acute triangle. By investigating how the ellipse inscribed within this triangle deforms, students learn about strain, strain ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Structural Geology:Folds/Faults/Ductile Shear Zones, Stress/Strain/Strain Analysis, Structural Visualizations, Geoscience:Geology:Geophysics:Geodynamics, Geography:Geospatial, Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity, Geoscience:Geology:Geomorphology:GIS/Mapping/Field Techniques, Physics:General Physics:Vector Algebra, Environmental Science:Natural Hazards:Earthquakes, Geoscience:Geology:Tectonics, Geomorphology:Landscape Evolution, Geography:Physical, Geoscience:Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 5: 2014 South Napa Earthquake and GPS strain part of GPS, Strain, and Earthquakes
Phil Resor, Wesleyan University
The 2014 South Napa earthquake was the first large earthquake (Mag 6) to occur within the Plate Boundary Observatory GPS network (now Network of the Americas- NOTA) since installation. It provides an excellent ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Structural Geology:Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geodesy, Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Regional Structural/Tectonic Activity, Environmental Science:Natural Hazards:Earthquakes, Geoscience:Geology:Environmental Geology, Tectonics, Structural Geology:Geophysics and Structural Geology, Geography:Geospatial, Physical
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 1: Earthquake! part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu)
Phil Resor, Wesleyan University (presor@wesleyan.edu)
In this opening unit, students develop the societal context for understanding earthquake hazards using as a case study the 2011 Tohoku, Japan, earthquake. It starts with a short homework "scavenger hunt" ...
Online Readiness: Online Adaptable
Resource Type: Activities: Course Module, Activities:Classroom Activity:Short Activity:Think-Pair-Share, Activities
Subject: Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Regional Structural/Tectonic Activity, Geophysics and Structural Geology, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geography:Geospatial, Human/Cultural, Geoscience:Geology:Geophysics:Geodesy, Geoscience:Geology:Tectonics, Environmental Geology, Environmental Science:Natural Hazards:Earthquakes, Coastal Hazards:Tsunami, Environmental Science:Policy:Environmental Economics, Environmental Science:Energy:Energy Infrastructure, Nuclear Energy, Geoscience:Oceanography:Physical , Marine Geology and Geophysics, Geography:Physical, Geoscience:Oceanography:Marine Hazards
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 5: How do earthquakes affect society? part of Imaging Active Tectonics
Bruce Douglas, Indiana University-Bloomington; Gareth Funning, University of California-Riverside
Unit 5 is a final exercise that can start during a lab period and carry over into work outside of the lab time. The project report will test students' abilities to synthesize and apply knowledge related to ...
Resource Type: Activities: Activities, Course Module
Subject: Environmental Science:Natural Hazards:Earthquakes, Environmental Science:Policy:Environmental Decision-Making, Geoscience:Geology:Geophysics:Geodynamics, Environmental Science:Sustainability, Geoscience:Geology:Environmental Geology, Structural Geology:Regional Structural/Tectonic Activity, Geoscience:Geology:Tectonics, Structural Geology:Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Geophysics:Seismology, Geography:Geospatial, Geoscience:Geology:Structural Geology:Geophysics and Structural Geology, Geoscience:Geology:Geophysics:Geophysics in other disciplines, Geography:Physical, Geoscience:Geology:Geophysics:Geodesy
Activity Review: Passed Peer Review
Learn more about this review process.
Unit 4: The phenomenology of earthquakes from InSAR data part of Imaging Active Tectonics
Bruce Douglas, Indiana University-Bloomington; Gareth Funning, University of California-Riverside
How are different types of earthquakes represented in InSAR data? How can we obtain detailed information on the earthquake source from InSAR data? How well can we resolve those details? In this unit, students ...
Resource Type: Activities: Course Module, Activities
Subject: Geoscience:Geology:Geomorphology:Landforms/Processes, Geoscience:Geology:Structural Geology:Geophysics and Structural Geology, Geoscience:Geology:Geomorphology:Landscape Evolution, Modeling/Physical Experiments, Geomorphology as applied to other disciplines, Tectonic Geomorphology, Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity, Modeling Structural Processes, Geoscience:Geology:Geophysics:Geodesy, Computer Modeling, Geodynamics, Seismology, Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Tectonics, Environmental Science:Natural Hazards:Earthquakes, Geography:Physical
Activity Review: Passed Peer Review
Learn more about this review process.
Unit 1: "If an earthquake happens in the desert and no one lives there, should we care about it?" [How are human-made infrastructure lifelines affected by earthquakes?] part of Imaging Active Tectonics
Bruce Douglas, Indiana University-Bloomington; Gareth Funning, University of California-Riverside
This unit initiates a discussion about the importance of recognizing faults in relation to modern societal infrastructure. Students consider the types of infrastructure necessary to support a modern lifestyle, ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Tectonics, Environmental Geology, Structural Geology:Geophysics and Structural Geology, Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Geophysics:Geodynamics, Seismology, Environmental Science:Energy:Energy Infrastructure, Environmental Science:Land Use and Planning:Large-Scale Development, Environmental Science:Natural Hazards:Floods/Fluvial Processes, Engineering, Environmental Science:Natural Hazards:Mass Wasting, Earthquakes, Environmental Science:Sustainability, Geoscience:Geology:Geophysics:Geodesy, Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 3: How to see an earthquake from space (InSAR) part of Imaging Active Tectonics
Bruce Douglas, Indiana University-Bloomington; Gareth Funning, University of California-Riverside
How can we tell what style of faulting was responsible for a particular earthquake? Especially in cases where there is limited instrumentation in a region, or where geologists have difficulty accessing the affected ...
Resource Type: Activities: Course Module, Activities
Subject: Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Regional Structural/Tectonic Activity, Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Geophysics:Seismology, Geography:Geospatial, Geoscience:Geology:Geophysics:Geodynamics, Geoscience:Geology:Structural Geology:Geophysics and Structural Geology, Geoscience:Geology:Geomorphology:Landforms/Processes, Environmental Science:Natural Hazards:Earthquakes, Physics:Oscillations & Waves:Instruments, Geoscience:Geology:Tectonics, Geomorphology:Geomorphology as applied to other disciplines, Landscape Evolution, Tectonic Geomorphology, Geography:Physical, Geoscience:Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.