More Ways to Navigate

Projects and Collaborations
Find projects on which SERC is a leader or collaborator

Search all of SERC

Tsunami Activities



Current Search Limits:

Results 41 - 50 of 828 matches

3D View from a Drone | Make a 3D Model From Your Photos
Shelley E Olds, EarthScope Consortium
Using cameras mounted to drones, students will design and construct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform in a process called structure from motion (SfM). This activity has both a hands-on component (collecting data with the drone) and a computer-based component (creating the 3-dimensional model).___________________Drones can take photos that can be analyzed later. By planning ahead to have enough overlap between photos, you take those individual photos and make a 3-dimensional image!In this activity, you guide the students to identify an outcrop or landform to study later or over repeat visits. They go through the process to plan, conduct, and analyze an investigation to help answer their science question.The Challenge: Design and conduct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform, then analyze the image and interpret the resulting 3-d image.For instance they might wish to study a hillside that has been changed from a previous forest fire. How is the hillside starting to shift after rainstorms or snows? Monitoring an area over many months can lead to discoveries about how the erosional processes happen and also provide homeowners, park rangers, planners, and others valuable information to take action to stabilize areas to prevent landslides.

Taphonomy: Dead and Fossilized Board Game
Rowan Martindale, The University of Texas at Austin
Incorporating games in teaching can help students retain material and become innovative problem solvers through engagement and enjoyment. Our board game, "Taphonomy: Dead and Fossilized" can be used as an ...

Pinpointing Location with GPS Demonstration: How GPS Works (Part 2)
Shelley E Olds, EarthScope Consortium
Using string, bubble gum, and a model of a GPS station, demonstrate how GPS work to pinpoint a location on Earth.Precisely knowing a location on Earth is useful because our Earth's surface is constantly changing from earthquakes, volcanic eruptions, tectonic plate motion, landslides, and more. Thus, scientists can use positions determined with GPS to study all these Earth processes.

Working with Point Clouds in CloudCompare and Classifying with CANUPO
Sharon Bywater-Reyes, University of Northern Colorado
This exercise will walk you through 1) basic operations and use in CloudCompare, and 2) use of an Open-Source plugin in CloudCompare called CANUPO (http://nicolas.brodu.net/en/recherche/canupo/) that allows for ...

Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.

Virtual Field Trip to the Cagles Mill Outcrop, Indiana
Max Christie, University of Illinois at Urbana-Champaign
During this virtual field trip students will write sedimentary facies descriptions, draw a stratigraphic column, and develop a set of paleogeographic maps of the Cagles Mill Spillway outcrop. This site is a ...

Tracking Sea Level and Paleoenvironments with Fossils
Pete Berquist, Virginia Peninsula Community College
Students use the Paleobiology Database Navigator to examine changes in sea level in southeastern North America throughout the Cretaceous, Paleogene, and Neogene Periods. They will plot the change in distribution of ...

Indiana River Meanders Mapping Exercise
Emily Zawacki, Arizona State University at the Tempe Campus
In Indiana, major rivers and their tributaries cross much of the state. These rivers can produce significant hazards related to flooding and erosion, which threaten nearby residents and infrastructure. Rivers are ...

Activity 10: Feedback Loops Applied
Cameron Weiner, Middlebury College
Students apply the vocabulary and concepts from the Activity 9: Feedback Loop Introduction to assess and create earth science feedback loops with the LOOPY online modeling program. (Optional) The students then ...

Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.