Friday Poster Session

Friday 3:00pm-4:00pm
Poster Session Part of Friday Poster Session

The Friday poster session is scheduled to take place from 3:00-4:00pm, on Friday, and presenters are asked to hang their posters by 1:00pm.

Course Resources

Co-Creating the Future of Science Communication: The SCI-LEnS Project at the University of British Columbia
Frederick Beeby Maglaque, University of British Columbia
Kirsten Hodge, University of British Columbia
Ruth Moore, University of British Columbia
Raveen Sidhu, University of British Columbia
Wylee Fitz-Gerald, University of British Columbia
Laura Lukes, University of British Columbia
Emma Betz, University of British Columbia
David Anderson, University of British Columbia
Shandin Pete, University of British Columbia

Show Abstract »

This presentation will provide an overview of the SCI-LEnS project (Student Curated Informal Learning and Engagement Spaces), an initiative at the University of British Columbia (UBC) redefining science communication education for graduate students. The course SCI-LEnS has developed aims to provide science graduate students with the skills and tools they need to communicate their cutting-edge research with the general public. It is with this goal in mind that the course and its development centers informal learning settings— museums, summer camps, aquariums, social media, podcasts, press releases, and beyond — as it is in these sites that science meets public audiences. Community-driven collaboration is at the heart of the SCI-LEnS project, and this presentation will highlight how these collaborations have been core to structuring the course's development. We will highlight the importance of involving local museum professionals, who have contributed their expertise to the course, engaging with Indigenous scholars and community members, who've steered the course's key theme of decolonization in the sciences, and having students as co-developers of the course's core curriculum, leading research and content creation as part of a students-as-partners model of course development (Healey et all, 2016). We will also cover the course's experiential learning opportunities provided through the Pacific Museum of Earth, the course's "host" museum, which will allow students to apply their learnings in a real-world setting. As a reciprocal relationship, the course will also benefit the Pacific Museum of Earth's long-term sustainability as a university-run informal learning space as students will build and iterate on the museum's resources. This presentation is aimed at educators, museum professionals, and anyone interested in the intersection of education, community engagement, and the importance of providing early-career scientists with the skills to communicate why their science matters.Healey, M., Flint, A., Harrington, K. (2016). Students as partners: Reflections on a conceptual model. Teaching & Learning Inquiry, 4(2).
Improving Climate Literacy Through Hands-on Learning and Open-source Collaborative Training
Emma Holtzman, Temple University
Rebecca Beadling, Temple University
William Ellinger, Temple University
Anna Coomans, Temple University
James Milward, Temple University
Hunter Barbieri, Temple University

Show Abstract »

The ability to analyze, visualize, and think critically about the results from climate model experiments is becoming an increasingly important component of climate science education. Being able to draw accurate and meaningful conclusions from global climate projections is central to climate literacy and developing appropriate policy. Climate modeling and model analysis, however, is a complex and challenging field with a steep learning curve that presents a significant barrier to entry. This project aims to reduce this barrier by providing carefully designed open-source material to broaden the field and improve climate literacy through hands-on learning and collaborative training. By creating comprehensive interactive material, we can give students the training to succeed in this ever-growing field. Material will be synthesized into a textbook guide that will encompass the basic skills needed to begin working with climate model output from the ground up and progress to more complex skills including running simple energy balance and coupled climate models. Through the use of HackMD and The Binder Project, this textbook will not only contain step by step instructions, clear explanations, but also external resources and worksheet style Jupyter notebooks for skill application and practice. This guide will specifically be integrated into the hands-on, project oriented, Observing and Modeling Climate Change course at Temple University and the Ocean Climate Connections lab lead by Dr. Rebecca Beadling. The guide has the potential to be adapted to benefit many other groups and individuals interested in climate modeling and climate research.
Developing student systems thinking and increasing engagement using ZotGraph
Julie Ferguson, University of California-Irvine
Bill Tomlinson, University of California-Irvine
Hayden Freedman, University of California-Irvine
Kameryn Denaro, University of California-Irvine

Show Abstract »

As geoscientists, one of our key goals is to help students develop their "systems thinking". Being able to make connections between different parts of a system and consider how they interact is crucial if we want our students to be able to fully understand the Earth system, as well as tackle issues related to climate change and environmental sustainability. A team of researchers at UCI has developed an interactive system, called ZotGraph, to help users make connections between different concepts. ZotGraph is an online platform that allows students to construct a concept map by adding concepts and then connecting these concepts via labeled relationships. To add concepts and relationships relevant to a particular course's content, students need to break these topics into discrete parts, which gets students to think deeply about how concepts within a class are (or are not) connected to each other. This new system will be tested in Spring quarter 2024 by students in a large (400-student) introductory Earth System Science class. Students will be given an initial starting map and asked to add new concepts and connections every two weeks to show their growing understanding of the geosphere, atmosphere, hydrosphere, and biosphere, and the interactions that exist between them. At the end of the quarter, students' maps will be merged and they will be asked to analyze and reflect on this larger map. Pre and post surveys will also be carried out to assess if the assignments result in any changes in student opinions, as well as solicit feedback on the software. By providing students with an interactive platform, we hope to enable them to develop their systems thinking more effectively than using more conventional assignments, as well as make grading scalable for large classes.
Machine Learning Foundations and Applications in the Earth Systems Sciences
Nicole Corbin, University Corporation for Atmospheric Research (UCAR)
Thomas Martin, University Corporation for Atmospheric Research (UCAR)
Keah Schuenemann, Metropolitan State University of Denver

Show Abstract »

Machine Learning Foundations and Applications in the Earth Systems Sciences is a series of modules designed to teach students core machine learning reasoning skills without requiring prerequisite programming knowledge. Machine learning tools and outputs are increasingly more popular in the Earth Systems Science workforce, thus, students should be prepared to interact with them upon degree completion. Additionally, advancements in the technology will warrant greater reliance on the responsible usage of pre-existing machine learning models and the interpretation of their outputs rather than the development of new models. This series of modules prepares students to be savvy users of machine learning tools by building their conceptual understanding of machine learning systems, encouraging critical scrutiny of data, and fostering judgment and decision making skills. The first module is piloted in an advanced synoptic meteorology class at the Metropolitan State University of Denver. This module is designed to guide students through the very basics of supervised machine learning in the Earth Systems Sciences using a systems-thinking approach. They will discover how machine learning is used by scientists, the generalized process for model development, how data plays a crucial role in making good predictions, and how to be an effective and ethical user of machine learning tools. They also learn that machine learning is not a catch-all solution to every problem. Through simple schematics and graphs, students are guided through the conceptual process for developing and using supervised machine learning for science. This poster will demonstrate the no-code approach to understanding supervised machine learning, reflect on the pilot session, and share lessons learned for future projects.

Geoscience Education Research

Enhancing Teaching and Learning about Water: Sustained Professional Development for K-12 Science Teachers
Brenda Costello, The University of Texas at Arlington
Silvia Jessica Mostacedo Marasovic, The University of Texas at Arlington
Cory Forbes, The University of Texas at Arlington

Show Abstract »

The hydrologic cycle plays a crucial role in Earth's ability to sustain the complex ecosystems that make the planet rich and diverse. As the world's population increases, water resources may become limited and future societies will need advanced knowledge and tools to make informed decisions about water management. Nonetheless, hydrologic science remains a deemphasized component of K-12 education. Studies show that even science, technology, engineering, and mathematics (STEM) programs may not prepare students adequately to analyze hydrologic data and make critical decisions involving water. In response to the need for improved knowledge and understanding of water systems, this study focuses on the design, implementation, and evaluation of multiple multi-year professional development programs for K-12 teachers (n = 89) focused on teaching and learning about water. The study aims to answer the following questions: i. What factors influence teachers' self-efficacy and content knowledge regarding water curriculum in the classroom? ii. Were PD programs successful at improving teachers' knowledge and ability to enrich students' water education? iii. What tools were useful in improving teachers' ease and comfortability to teach hydrologic science in the classroom? We used a mixed methods approach, including data from pre and posttests, online content learning modules, a self-characterization survey and qualitative feedback on the programs. Quantitative analysis was employed to correlate factors influencing teachers' pretest, posttest, and change scores. Qualitative methods were used to analyze teacher self-efficacy, classroom practices and overall program success. Results showed that geographic location, years of teaching experience, number of students, and grade level were statistically significant factors regarding teachers' water content knowledge. The professional development programs were beneficial at improving teachers' knowledge of hydrologic processes and self-efficacy for supporting student learning about water. In addition, teacher feedback provided several effective instructional tools.
Enhancing Geoscience Education: Evaluating Student Interpretations of Runoff Data Using an EBR Framework
James Hobbs, Tarrant County College District
Brenda Costello, The University of Texas at Arlington
Silvia Jessica Mostacedo Marasovic, The University of Texas at Arlington
Cory Forbes, The University of Texas at Arlington

Show Abstract »

Urban runoff presents a crucial challenge in sustainable urban planning, impacting water quality, flood management, and infrastructure resilience. This study aimed to improve geoscience education by integrating practical, data-driven urban runoff analysis through Intensity-Duration-Frequency (IDF) curves and the Rational Method for runoff calculation. We assessed the effectiveness of the geoscience curriculum in developing students' critical analytical skills, focusing on students' ability to interpret IDF curves and evaluate urban runoff implications. The assignment required students to generate IDF curves for a specified area, calculate runoff volumes for 2-year and 100-year storm events using the Rational Method, and evaluate the impact of urban development on hydrological processes. Employing an Evidence-Based Reasoning (EBR) framework, we analyzed the proficiency of students (n=56) from various undergraduate geoscience and environmental science courses across multiple higher education institutions (HEIs). We examined students' capabilities in establishing premises through data analysis and interpreting evidence to produce claims about urban runoff and flood risks. This approach emphasized the essential role of empirical data in connecting scientific reasoning and knowledge to current environmental challenges. Initial findings of this mixed-methods study indicate varying proficiency levels among student groups, providing valuable insights into educational strategies educators employ to enhance student engagement with complex environmental data. The research highlights the necessity of incorporating data-driven, real-life problems into geoscience education to develop a better understanding and improve critical thinking skills. We present our initial findings and their pedagogical implications, underscoring the EBR framework's significance in geoscience education. The study contributes to the current discourse on advancing discipline-based education research (DBER) methods and teaching innovations in geoscience education, focusing on environmental sustainability and urban planning.
The effect of Spatial Anxiety on training spatial reasoning
Katharine Johanesen, Juniata College
Territa Poole, Juniata College
Katherine Ryker, University of South Carolina-Columbia

Show Abstract »

Spatial reasoning skills are an important component of student development in geoscience. While ability levels vary between individuals, these skills are trainable. Recently, Spatial Anxiety has been recognized as a contributing factor to performance on tests of spatial abilities. Spatial Anxiety is defined by Lyons et al. as the "fear or apprehension towards spatial processing" (2018), who developed a Spatial Anxiety Scale. It correlates with lower performance on spatial reasoning tasks. To test whether this effect moderates skill gains from spatial training, we measured the Manipulation subscale of Spatial Anxiety on the pretest portion of an experiment to measure the effects of training on spatial abilities. Spatial reasoning was measured using the Visualization of Views (VoV) and Water Level Task (WLT) tests in a pretest-posttest format. Students in an introductory college geology course were divided by lab section into experimental and standard training groups to learn the skill of measuring strike and dip. The experimental group learned the skill through a Virtual Reality module, while the standard group participated in classroom-based practice. As predicted by Lyons et al. (2018), we found a negative correlation between Spatial Anxiety and pretest scores on VoV (B=-0.23, p=0.057, n=100) and WLT (B=-0.05, p=0.023, n=145). Spatial Anxiety also has a significant effect on VoV and WLT improvement scores. Spatial Anxiety negatively correlated with VoV improvement scores (B=-0.203, p=0.039, n=46), as expected. Surprisingly, higher Spatial Anxiety correlates with WLT higher improvement scores (B=0.045, p=0.015, n=89). There were no interaction effects between training condition and Spatial Anxiety. This indicates that, while Spatial Anxiety may predict lower spatial scores, it does not reduce the potential of training to improve those scores, including training involving Virtual Reality.
Identifying Meteorology Misconceptions among Pre-service and General Education Eastern Kentucky Students: Implications for Survey Validation and Curriculum Improvement.
Md Kibria, Morehead State University
Kaitlyn Nelson, Morehead State University
Ivy Litton, Morehead State University
Wilson González-Espada, Morehead State University
Jennifer O'Keefe, Morehead State University

Show Abstract »

One of the goals of K-12 science education is to help future citizens become scientifically literate. Since weather is one of the natural events that people experience constantly, meteorology literacy is critical. Researchers have noted that the public does not understand how the atmosphere works. These misconceptions accumulate over time due to misinterpretation of everyday experiences, oversimplifications in textbooks and media, and incomplete diagrams and analogies. This study uncovered the endurance of meteorological misconceptions, investigating 22 pre-service elementary teachers enrolled in ESS 112 and 38 general education students enrolled in ESS 102, as measured by the Survey of Meteorology Concepts (SMC) as a content pre-and post-test that is undergoing validation through item response theory concepts like item difficulty, item discrimination, and distractor analysis. The researchers found that, although ESS 112 and ESS 102 students perceived the SMC as quite difficult (Diffave = 0.30), ESS 102 students perceived the post-survey as significantly easier (Diffpost = 0.40) than ESS 112 students (Diffpost = 0.28). The findings revealed significant decreases in Lucky Guesses and Unlucky Guesses and increases in correct and high-confidence (Knowledge) answers. The baseline and knowledge gains were lower for ESS 112 students (10% to 17%, t = 3.53, p = 0.001) than for ESS 102 students (14% to 25%, t = 7.21, p < 0.0001). Surprisingly, responses that were incorrect but high-confidence (Misconceptions) increased significantly, with the most increase in the ESS 112 group (14% to 32%, t = 9.68, p < 0.0001) compared with the ESS 102 group (14% to 19%, t = 4.03, p = 0.0002), suggesting that misconceptions persisted but, after completing an earth science class, students have enhanced confidence in these incorrect ideas. The findings aim to strengthen science education by correcting weather misconceptions and guiding effective instructional strategies for improvement.
A case study comparing undergraduate students' engagement, knowledge retention, and appreciation of geoscience after working in class with either locally or globally sourced data
Jesse Kelsch, Sul Ross State University
Diane Doser, University of Texas at El Paso
Jason Ricketts, University of Texas at El Paso

Show Abstract »

We developed in-class exercises that exposed students to real geoscientific data and delivered them to five sections of Physical and Historical Geology undergraduate lecture classes at two universities. Three class sections worked with data from a local source and two sections used data that had originated more distantly, or "globally." We assessed the students' engagement, knowledge retention, critical thinking, and perception of the relevance of geoscience after each exercise to determine if these outcomes differed between the students working on global data and those working on local data. The group exposed to local data had higher scores and rankings following four of the five exercises, indicating a lead in each of the four outcomes. In particular, they scored higher in answering questions with a higher Bloom's level of complexity, a measure of critical-thinking skills, and in their perception of the relevance of the geoscientific topic. Unavoidable variation between exercise topics related to the levels of contact with and manipulation of data revealed an additional observation that more contact (for example downloading data vs. opening a provided file) and more manipulation (i.e. graphing vs. viewing completed graphs) also produced more engagement, knowledge retention, and connection to the relevance of these geoscientific topics among both student groups. However, those working with local data continued to have higher outcome scores and rankings than those working with global data.
Where are Students Developing the Skills and Dispositions Needed for the Geoscience Workforce?
Kaelyn Lagerwall, Boise State University
Karen Viskupic, Boise State University
Anne Egger, Central Washington University
Mark Schmitz, Boise State University

Show Abstract »

This study aims to identify trends in undergraduate geoscience course instruction and assess its impact on students' development of critical workforce skills and dispositions, with the goal of utilizing these data to enhance curricular design. The following questions guide our research: How frequently do faculty incorporate opportunities for geoscience majors to practice desired workforce skills and dispositions in their courses? To what degree do undergraduate geoscience students practice workforce skills and dispositions across their degree program? How would modifying the undergraduate geoscience curriculum impact student development of workforce skills and dispositions? To address these questions, we developed a synthesized list of critical workforce skills (e.g., data collection and interpretation, temporal and spatial thinking, written and oral communication) and dispositions (e.g., professionalism, work ethic, flexibility), created new and modified existing questions from the National Geoscience Faculty Survey (NGFS), and administered the survey to faculty and students in undergraduate geoscience programs at two public universities in the Pacific Northwest. Follow-up interviews with faculty will be used to validate the survey questions and better understand how course activities are implemented and influence students' development of critical workforce dispositions. The analysis could serve as a model for undergraduate geoscience programs seeking to evaluate their effectiveness in preparing students for the workforce, which can inform curricular changes. We aspire to offer valuable insights to the broader geoscience community on how student employment and workforce needs may be better addressed by degree programs.
The roles and responsibilities of graduate teaching assistants: A mixed-method study of faculty and teaching assistant perspectives
Emma McCully, Boise State University
Karen Viskupic, Boise State University

Show Abstract »

Graduate teaching assistants (GTAs) are a critical component of a university department. They frequently serve as the primary point of contact for undergraduate students, and thus, have the power to help shape a department's learning culture. In addition to being critical in shaping the undergraduate experience, serving as a teaching assistant may be the only formal teaching experience faculty members have prior to starting their positions. Faculty attitudes and beliefs towards teaching are largely shaped by their experience as a GTA or interacting with GTAs (e.g., Nyquist & Wulff, 1996). One study found that only 51% of faculty surveyed claimed that they had constructive experiences as a GTA (Calkins & Kelley, 2007). Thus, a GTA's experience has the potential to be incredibly influential on their career trajectory. Despite playing such an important role in higher education, little is known about GTAs' perceptions of their roles and responsibilities. This study employs a mixed-methods approach to capture the perspectives of GTAs and faculty on the roles and responsibilities of GTAs. Sixteen faculty members in a geoscience department at a mid-sized R2 university were interviewed about their experience working with GTAs. The department's GTAs in turn were surveyed about their experiences and responsibilities over four semesters. The survey resulted in 49 total responses from 25 unique GTAs, who reported their experiences across 19 undergraduate courses. To evaluate the interview and survey results, we utilize the 'Model Stages of TA Development' framework proposed by Nyquist & Wulff (1996) which employs a three-phase evolution of GTAs' responsibilities and perceptions. Each stage indicates increased independence, responsibility, and professionalism from the TA and increased mentorship and trust from the faculty. Initial results show that from both the GTA and faculty perspectives, GTAs' responsibilities and roles occupy all three stages across all course levels.
Exploration of environmental perspectives in Miami through document analysis: A building block towards supporting place-based learning
oriana Calagna, Florida International University
Kathy Quardokus Fisher, University of Notre Dame

Show Abstract »

The study represents a deep dive into Miami's environmental landscape through a qualitative analysis of key documents. Its primary objective is to uncover pressing environmental concerns to inform the development of a culturally relevant curriculum deeply rooted in Miami's environmental movement. The impetus behind this endeavor is to empower local communities with the knowledge and tools necessary to address environmental challenges specific to their surroundings. This research is part of a broader initiative aimed at crafting place-based curriculum tailored to the needs and interests of Latine communities in South Florida.By scrutinizing major environmental organizations' documents, we gain insights into Miami's environmental ethos and the extent of Latine involvement in the city's environmental endeavors. Notably, our analysis identifies recurring themes within the Food-Energy-Water (FEW) nexus, shedding light on critical environmental issues confronting Miami. Initial findings suggest a spectrum of Latine engagement, ranging from mere acknowledgment of diversity to active participation and leadership roles within the environmental movement. These insights, drawn from our preliminary analysis of website content, lay the groundwork for further categorization and deeper exploration in subsequent stages of data analysis.Our study aims to address two central objectives: understanding Latine participation dynamics and unraveling FEW nexus themes within Miami's environmental discourse. By establishing connections between these themes, we aim to underscore the relevance of FEW issues to Latine communities in South Florida. Ultimately, our research endeavors to inform the development of educational resources and interventions aimed at fostering pro-environmental behaviors and nurturing changemakers within Miami's diverse communities.