Developing student systems thinking and increasing engagement using ZotGraph

Friday 3:00pm-4:00pm SERC Building - Atrium | Poster #15
Poster Session Part of Friday Poster Session

Authors

Julie Ferguson, University of California-Irvine
Bill Tomlinson, University of California-Irvine
Hayden Freedman, University of California-Irvine
Kameryn Denaro, University of California-Irvine

As geoscientists, one of our key goals is to help students develop their "systems thinking". Being able to make connections between different parts of a system and consider how they interact is crucial if we want our students to be able to fully understand the Earth system, as well as tackle issues related to climate change and environmental sustainability. A team of researchers at UCI has developed an interactive system, called ZotGraph, to help users make connections between different concepts. ZotGraph is an online platform that allows students to construct a concept map by adding concepts and then connecting these concepts via labeled relationships. To add concepts and relationships relevant to a particular course's content, students need to break these topics into discrete parts, which gets students to think deeply about how concepts within a class are (or are not) connected to each other.

This new system will be tested in Spring quarter 2024 by students in a large (400-student) introductory Earth System Science class. Students will be given an initial starting map and asked to add new concepts and connections every two weeks to show their growing understanding of the geosphere, atmosphere, hydrosphere, and biosphere, and the interactions that exist between them. At the end of the quarter, students' maps will be merged and they will be asked to analyze and reflect on this larger map. Pre and post surveys will also be carried out to assess if the assignments result in any changes in student opinions, as well as solicit feedback on the software. By providing students with an interactive platform, we hope to enable them to develop their systems thinking more effectively than using more conventional assignments, as well as make grading scalable for large classes.