# Teaching Activities

Help

Results 1 - 20 of 460 matches

Volcano Monitoring with GPS: Westdahl Volcano Alaska
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...

Human Wave: Modeling P and S Waves
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.

Unit 3: The Interconnected Nature of the Atmosphere, Hydrosphere, and Biosphere
Using a systems dynamics approach, students will work in groups to conceptualize and construct a model of the global carbon cycle considering five major Earth systems: atmosphere, hydrosphere, geosphere, ...

Seismic Slinky: Modeling P and S waves
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.

How Do We Know Where an Earthquake Originated?
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.

Unit 1: Climate Change and Sea Level: Who Are the Stakeholders?
How are rising sea levels already influencing different regions? This unit offers case study examples for a coastal developing country (Bangladesh), a major coastal urban area (southern California), and an island ...

Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.

Unit 3: Monitoring groundwater storage with GPS vertical position
This unit shows how GPS records of surface elevation can be used to monitor groundwater changes. Students calculate secular trends in the GPS time series and then use the original and detrended records to identify ...

Earthquake Hazard Maps & Liquefaction: Alaska emphasis
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.

Unit 4: GPS and infinitesimal strain analysis
Students work with GPS velocity data from three stations in the same region that form an acute triangle. By investigating how the ellipse inscribed within this triangle deforms, students learn about strain, strain ...

Unit 2: Global Sea-Level Response to Temperature Changes: Temperature and Altimetry Data
What is the contribution of seawater thermal expansion to recent sea-level rise? In this unit, students create time-series graphs of global averaged sea surface temperature anomaly (SSTA) data spanning 1880–2017 ...

Measuring Plate Motion with GPS: Iceland
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.

Earthquake Machine
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

Unit 4: Anatomy of a tragic slide: Oso Landslide case study
Landslides can have profound societal consequences, such as did the slide that occurred near Oso, Washington in 2014. Forty-three people were killed and entire rural neighborhood was destroyed. In this unit, ...

Fault Models for Teaching About Plate Tectonics
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.

Unit 5: Summative assessment project
Unit 5 is the summative assessment for the module. This final exercise takes eight to ten hours. The exercise evaluates students' developed skills in survey design, execution of a geodetic survey, and simple ...

World Map of Plate Boundaries
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.

Unit 1: Earthquake!
In this opening unit, students develop the societal context for understanding earthquake hazards using as a case study the 2011 Tohoku, Japan, earthquake. It starts with a short homework "scavenger hunt" ...

Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics
Learners use the UNAVCO GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.

Building Shaking —Variations of the BOSS Model
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.