Teaching Activities
Subject: Natural Hazards
Results 1 - 20 of 537 matches
Let's Look Inside the Earth
Students will analyze USGS seismology data in the classroom using spreadsheets and scatter plots to look for patterns and structure in the Earth's crust. Before analyzing data, students will learn about the ...
Learn more about this review process.
Bomb Cyclones - They're Explosive!
Storms can have devastating impacts on coastal communities. Typically, tropical storms like hurricanes get the most attention, but there are other types of storms that occur at more northern latitudes that can be ...
Learn more about this review process.
Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.
Learn more about this review process.
Unit 2: Global Sea-Level Response to Temperature Changes: Temperature and Altimetry Data
What is the contribution of seawater thermal expansion to recent sea-level rise? In this unit, students create time-series graphs of global averaged sea surface temperature anomaly (SSTA) data spanning 1880–2017 ...
Learn more about this review process.
Learn more about this review process.
Lab 3: Normal Climate Patterns
The lab activity described here was created by Betsy Youngman of Phoenix Country Day School and LuAnn Dahlman of TERC for the EarthLabs project. Summary and Learning Objectives Students generate and explore a ...
Learn more about this review process.
Unit 6: Applying GPS strain and earthquake hazard analyses to different regions
Students select their own set of three stations in an area of interest to them, conduct a strain analysis of the area between the stations, and tie the findings to regional tectonics and societal impacts in a 5–7 ...
Learn more about this review process.
Unit 4: GPS and infinitesimal strain analysis
Students work with GPS velocity data from three stations in the same region that form an acute triangle. By investigating how the ellipse inscribed within this triangle deforms, students learn about strain, strain ...
Learn more about this review process.
Learn more about this review process.
World Map of Plate Boundaries
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.
Learn more about this review process.
Unit 4: Hazards from Flooding
In this unit, students examine detailed hydrologic data from one river to identify ways in which precipitation and stream discharge influence flooding which often impacts nearby human societies. They also research ...
Learn more about this review process.
Unit 1: Foundational Concepts
Unit 1 introduces foundational concepts in geoscience, emergency management, and political science that are critical for developing a systems thinking approach and for achieving the learning objectives in the storm ...
Learn more about this review process.
Learn more about this review process.
Learn more about this review process.
Unit 3: Global Sea-Level Response to Ice Mass Loss: GRACE and InSAR data
What is the contribution of melting ice sheets compared to other sources of sea-level rise? How much is the sea level projected to increase during the twenty-first century? In this unit, students will use Gravity ...
Learn more about this review process.
Learn more about this review process.
Topographic differencing: Earthquake along the Wasatch fault
After a big earthquake happens people ask, 'Where did the earthquake occur? How big was it? What type of fault was activated?' We designed an undergraduate laboratory exercise in which students learn how ...
Learn more about this review process.
Unit 2: Monitoring surface and groundwater supply in central and western US
In Unit 2, students learn how the techniques for water budgeting (covered in Unit 1) can be used to monitor both groundwater (High Plains Aquifer) and surface water (western mountain watershed) systems. Students ...
Learn more about this review process.
Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.
Learn more about this review process.
Unit 3: How Streams Change
Students use Google Earth to observe two river systems and characterize changes in gradient from the headwaters to the mouth, and relate changes in those gradients to different rock types. At one location, they ...
Learn more about this review process.
Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.
Learn more about this review process.
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.
Learn more about this review process.
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Learn more about this review process.
Unit 2: Earthquakes, GPS, and Plate Movement
GPS data can measure bedrock motion in response to deformation of the ground near plate boundaries because of plate tectonics. In this module, students will learn how to read GPS data to interpret how the bedrock ...
Learn more about this review process.
Learn more about this review process.
Converging Tectonic Plates Demonstration
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Learn more about this review process.