Teaching Activities
Earth education activities from across all of the sites within the Teach the Earth portal.
Grade Level
Resource Type: Activities
Subject Show all
Geoscience > Geology > Geophysics > Geodesy
139 matchesProject Show all
- Cutting Edge 59 matches
- Earth Educators Rendezvous 2 matches
- Earth Exploration Toolbook 1 match
- EarthScope ANGLE 4 matches
- GETSI 62 matches
- NAGT 3 matches
- Project EDDIE 1 match
- Starting Point-Teaching Entry Level Geoscience 2 matches
- Teach the Earth 5 matches
Results 21 - 30 of 139 matches
Unit 4: Comparing risks at different volcanoes part of Monitoring Volcanoes and Communicating Risks
Rachel Teasdale (California State University Chico) and Kaatje van der Hoeven Kraft (Whatcom Community College)
Students assess the risks from three different volcanoes based on the Risk Equation, Risk = Hazard x Value x Vulnerability. The three volcanoes--Fuego Guatemala, Rinjani Indonesia, and Moana Loa Hawaii--have ...
Resource Type: Activities: Course Module, Activities
Subject: Geoscience:Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Resource Type: Activities: Activities:Classroom Activity, Activities, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards, Geoscience:Geology:Tectonics, Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Unit 2: Kilauea Hawai'i - Monday Morning Meeting at the USGS Hawai'i Volcano Observatory part of Monitoring Volcanoes and Communicating Risks
Kaatje van der Hoeven Kraft, Whatcom Community College and Rachel Teasdale, California State University-Chico
How do volcanologists at the Hawaiian Volcano Observatory monitor volcanoes? In a jigsaw format, students first work in teams to learn one of the four volcano monitoring data sets (GPS, Tilt, Seismic and InSAR) and ...
Resource Type: Activities: Course Module, Activities
Subject: Geoscience:Geology:Geophysics:Geodesy, Seismology
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Converging Tectonic Plates Demonstration part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Resource Type: Activities: Activities:Classroom Activity, Activities, Outreach Activity, Lab Activity
Subject: Geoscience:Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Geography:Geospatial, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Unit 2: Earthquakes, GPS, and Plate Movement part of Measuring the Earth with GPS
Karen M. Kortz (Community College of Rhode Island)
Jessica J. Smay (San Jose City College)
GPS data can measure bedrock motion in response to deformation of the ground near plate boundaries because of plate tectonics. In this module, students will learn how to read GPS data to interpret how the bedrock ...
Resource Type: Activities: Course Module, Activities
Subject: Geography:Geospatial, Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Working with Point Clouds in CloudCompare and Classifying with CANUPO part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Sharon Bywater-Reyes, University of Northern Colorado
This exercise will walk you through 1) basic operations and use in CloudCompare, and 2) use of an Open-Source plugin in CloudCompare called CANUPO (http://nicolas.brodu.net/en/recherche/canupo/) that allows for ...
Online Readiness: Online Ready
Resource Type: Activities: Activities:Lab Activity, Classroom Activity, Virtual Field Trip, Field Activity
Subject: Geoscience:Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Getting started with Structure from Motion (SfM) photogrammetry part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Beth Pratt-Sitaula, EarthScope
Structure from Motion (SfM) photogrammetry method uses overlapping images to create a 3D point cloud of an object or landscape. It can be applied to everything from fault scarps to landslides to topography. This ...
Online Readiness: Online Ready
Resource Type: Activities: Activities:Classroom Activity, Field Activity, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Exploring Tectonic Motions with GPS part of EarthScope ANGLE:Educational Materials:Activities
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change
Resource Type: Activities: Activities:Classroom Activity, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards, Geoscience:Geology:Tectonics, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Volcano Monitoring with GPS: Westdahl Volcano Alaska part of EarthScope ANGLE:Educational Materials:Activities
Maite Agopian, EarthScope; Beth Pratt-Sitaula, EarthScope
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...
Online Readiness: Online Adaptable
Resource Type: Activities: Activities:Classroom Activity, Lab Activity, Outreach Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards:Volcanism, Environmental Science:Natural Hazards, Engineering
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Alaska GPS Analysis of Plate Tectonics and Earthquakes part of EarthScope ANGLE:Educational Materials:Activities
Beth Pratt-Sitaula, EarthScope
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.
Resource Type: Activities: Activities:Classroom Activity, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Geoscience, Environmental Science:Natural Hazards:Earthquakes, Environmental Science:Natural Hazards, Engineering
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.