InTeGrate Modules and Courses >Future of Food > Student Materials > Module 1: Introduction > Module 1.2: Food Systems combine Natural and Human Systems > The Systems Concept
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Future of Food Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.
Initial Publication Date: January 11, 2018

The Systems Concept

What defines a system?

In this course, we will refer to the term "system" repeatedly, so it is worthwhile to think about how systems are defined. A basic definition of a system is "a set of components and their relationships". Rather than dwelling on this definition in the abstract, it's probably best to immediately think of how the definition applies to real examples from this course. An ecosystem is a type of system you may have heard of, in which the components are living things like plants, animals, and microbes plus a habitat formed of natural, urban, and agricultural environments, and all the relationships among these component parts, with an emphasis on the interactions between the living parts of the system and their interactions, for example, food webs in which plants feed herbivores and herbivores feed carnivores. A food system, as we have just begun to see so far, consists of food production components like farms, farm fields, and orchards, along with livestock; food distribution chains including shipping companies and supermarkets, and consumers like you and your classmates, with myriad other components like regulatory agencies, weather and climate, and soils. In the case of food systems we have already pointed out how these can be considered as human-natural (alternatively, human-environment) systems, where it can help to see the system as composed of interacting human components (societies, companies, households, farm families) and natural components like water, soils, crop varieties, livestock, and agricultural ecosystems.

Behavior of Complex Systems

Systems that contain a large number of components interacting in multiple ways (like an ecosystem, above, or the human-natural food systems elsewhere in this text) are often said to be complex. The word "complex" may have an obvious and general meaning from daily use (you may be thinking "of course it is complex! there are lots of components and relationships!") but geoscientists, ecologists, and social scientists mean something specific here: they are referring to ways that different complex systems, from ocean food webs to the global climate system, to the ecosystem of a dairy farm, display common types of behavior related to their complexity. Here are some of these types of behaviors:

  • Positive and negative feedback: the change in a property of the system results in an amplification (positive feedback) or dampening (negative feedback) of that change. A recently considered example of positive feedback would be that as the arctic ocean loses sea ice with global warming, the ocean begins to absorb more sunlight due to its darker color, which accelerates the rate of sea ice melting.
  • Many strongly interdependent variables: this property results in multiple causes leading to observed outputs, with unobserved properties of the system sometimes having larger impacts than we might expect.
  • Resilience:Resilience will be discussed later in the course, but you can think of it here as a sort of self-regulation of complex systems in which they often tend to resist changes in a self-organized way, like the way your body attempts to always maintain a temperature of 37 C. Sometimes complex systems maintain themselves until they are pushed beyond a breaking point, after which they may change rapidly to another type of behavior.
  • Unexpected and "emergent" behavior: one consequence of the above three properties is that complex systems can display unexpected outcomes, driven by positive feedbacks and unexpected relationships or unobserved variables. Sometimes this is referred to as "emergent" behavior when we sense that it would have been impossible to predict the behavior of the system even if we knew the "rules" that govern each component part.

To these more formal definitions of complex systems, we should add one more feature that we will reinforce throughout the course in describing food systems that combine human and natural systems, which is that drivers and impacts often cross the boundary between human or social systems and environmental or natural systems (recall Fig. 1.1.2). Our policies, traditions, and culture have impacts on earth's natural systems, and the earth's natural systems affect the types of human systems that develop, while changes in natural systems can cause changes in policies, traditions, and culture.

For more information on complex systems properties with further examples, see Developing Student Understanding of Complex Systems in Geosciences, from the "On the Cutting Edge" program.

On the next page, we'll see an interesting example of complex system behavior related to the food system in India.


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »