Geoscience Education Research
Employer Perceptions of Career Training and Disability in the Geosciences
Show Abstract »
Geoscience's field based culture can provide a barrier for students, especially students with disabilities. Field coursework is required in many geoscience programs and is met by completing a four to eight week field camp. Many students have little to no alternative option as accessible field trips and courses are very limited. Increasing inclusion of disability in the university is only one part of the solution. Recent science bachelor's degree recipients in the United States (without disabilities) have an unemployment rate of approximately 6% while the rate for graduates with disabilities is 15%. In this study, we survey geoscience professionals who are associated with hiring at their place of employment. Survey participants were from a variety of employment sectors, but most participants work in consulting or industry. Our online survey first examined the skills and field experience that employers desire in new graduates. Then, participants answered questions related to their perceptions on disability.Preliminary data indicate that jobs are more likely to be accessible to people with moderate physical disabilities and hearing impairment/deafness, while few employers felt that there were accessible positions for individuals with visual impairment/blindness and intellectual disabilities. Most employers were open to hiring geologists who had not taken a field course; however, most desired students to have at four to six credit hours of field coursework. In addition, only 5% of respondents did not require manual labor or field work of their geologists. Work is needed to increase accessibility in university geoscience departments; however, accessible employment is also essential in order to increase inclusion within our discipline.
The Undergraduate Classroom and Lab Courses II
Testing the implementation and impact of a gamification plugin for Canvas LMS in an introductory physical geology course
Show Abstract »
This poster illustrates the results of the implementation of a personalized gamified dashboard integrated into the Learning Management System (LMS) of a large-enrollment introductory physical geology course. While there is literature on the impact of geoscience-themed games on student learning, gamification is still a new concept in geosciences, particularly technology-based. The dashboard, called Delphinium, includes the most widely used gamification components, e.g., progress trackers, badges, rewards, and a leaderboard, to offer individual students accomplishment and instrumental goals to motivate them to engage with the course content organized in modules in the LMS. We measured the impact of this single gamification component on the performance of students enrolled in one section of the course (N=137) and compared it to the performance of students enrolled in a second section (N=86) taught in person by the same instructor in fall 2019. We compared the number of times users accessed the dashboard and the number of page views from the LMS, exam scores, and final grades. Students in both sections completed the Science Literacy Concept Inventory (SLCI) at the beginning and end of the semester. Using their SLCI score as control, students with access to Delphinium performed on average 13% better than students in the control section. Analysis of LMS data showed that students in the gamified section accessed the LMS more frequently and that the dashboard provided them with an early and significant advantage in the course.
Geoscience Education Research
Revising the Teacher Beliefs Interview for Post-Secondary Instructors
Show Abstract »
Teaching beliefs represent a set of understandings that influence what instruction looks like in practice. They are difficult to elicit and individuals may have limited vocabulary to explain why they teach the way they do. Few instruments have been developed to capture teaching beliefs. Luft and Roehrig (2007) developed the Teacher Beliefs Interview (TBI) in order to elicit the teaching beliefs of secondary science teachers. The TBI includes seven open-ended questions with coding rubrics that position responses into one of five categories: traditional, instructive, transitional, responsive, and reform-based. Traditional and instructive categories are considered teacher-centered, while responsive and reform-based categories are student-centered. Student-centered responses indicate a view of science instruction as teaching "a dynamic field that is subject to revision" (Luft & Roehrig, 2007; p. 42).We collected and coded more than 160 TBI interviews with post-secondary instructors. While coding these interviews, we noticed that this population frequently differs in how they respond to the seven TBI questions. This results in difficulties reliably coding responses, even among experienced TBI users. To address this, we re-analyzed 95 interviews conducted with post-secondary instructors using the original TBI rubrics. Initial Cronbach's alpha per question ranged from .609 to .905. Disagreements between reviewers were discussed to evaluate whether the source of disagreement was in the response, the coder, or the rubric. Exemplar quotes from agreed upon responses were collected. These discussions and exemplar responses using language from post-secondary instructors were incorporated into revised coding rubrics for each question. The authors then coded four randomly drawn interviews with the original and revised rubrics. The revised rubric improved reliability for experienced raters as measured using an intraclass correlation coefficient (.555 to .724). The revised TBI rubric can more reliably evaluate the teaching beliefs of post-secondary instructors, while maintaining the intent of the original rubric.
Measuring Student Improvement in Climate Literacy in a First-Year Interdisciplinary Climate Change Course
Show Abstract »
Despite scientific consensus that anthropogenic global climate change poses severe risks to human and natural systems, many young Canadian adults do not view it as a major issue. Climate literacy is generally accepted to be competence or knowledge in the area of climate change, its impacts, and solutions. Research indicates that in order to improve climate literacy, the social sciences must be more fully integrated with the biophysical basis of climate change. An interdisciplinary science/social science first year undergraduate course in climate change was developed in 2017, with the main educational goals focused on improving climate literacy. This course attracts students with a wide range of climate change knowledge from across the university.This research investigates the effectiveness of the course in improving students' climate literacy. To measure learning gains, a validated climate change concept inventory was administered pre- and post the course, for 3 offerings in 2020 (n=103 students). The final assignment in the course, a learning portfolio, was used as evidence of which assignments students felt most impacted their learning in the course: Students' choices of which assignments to include and a written reflection were analyzed with regard to climate literacy indicators. The survey analysis identified six common misconceptions that students hold when entering the course, and showed improvement in student understanding of those concepts after taking the course. Students reported that the most valuable course components for improving their understanding were lectures and brief, weekly engagement activities that challenged them to apply their knowledge to solve a problem or address a question. Thematic analysis of the learning portfolios indicated that students' climate literacy was improved through both physical and social science-based assignments.These results suggest that an interdisciplinary approach to teaching climate change is effective in terms of correcting climate change misconceptions and improving overall climate literacy.
Promoting equity in graduate geoscience departments through the AGU Bridge Program
Show Abstract »
Gaps between undergraduate and graduate degrees attained by minoritized student populations exist across the physical sciences, including the geosciences. The AGU Bridge Program, as a member of the larger Inclusive Graduate Education Network (IGEN), seeks to close this gap in degree attainment with intentional, equity-focused programming for both students and institutions. The AGU Bridge Program currently partners with thirty-one geoscience departments throughout the United States to create an inclusive network of graduate departments with a focus on holistic admissions practices, graduate student retention and success, and inclusive mentoring. Through IGEN, interested student applicants can apply to be considered for admission into AGU Bridge Partner departments graduate programs. Once admitted, the success of Bridge Fellows is fostered through a network of peers, resources, and support from AGU and Fellows' respective departments. Interested graduate geoscience departments can apply from June-October each year and student applications open each fall. This presentation will share updates on the impact and status of the AGU Bridge Program.
The Undergraduate Classroom and Lab Courses II
GeoGateway for Learning about Crustal Deformation, Data Analysis and Applications
Show Abstract »
Science gateways allow users to access shared data, software and services. GeoGateway (http://geo-gateway.org) is a solid earth geoscience gateway that provides tools for scientific discovery, field use, and disaster response using Interferometric SAR (InSAR) and Global Navigation Satellite System (GNSS) integrated with earthquake faults, seismicity, and model data. GeoGateway was initially developed for researchers to analyze and model crustal deformation related to fault slip and earthquakes. Two highlights of GeoGateway are interactive map displays of global GNSS-based land deformation and thousands of radar images from the NASA airborne platform (UAVSAR). Applications have been expanded to include earthquake nowcasting, and analysis of wildfire burn areas and debris flows for disaster response. We are expanding GeoGateway to include educational applications. To make GeoGateway accessible to a broad audience, we developed a GeoGateway User Guide and example applications. Preliminary exercises and tutorials were tested in the classroom at CalPoly Pomona in 2018, and in workshops at the Seismological Society of America 2019 Meeting, and Geological Society of America 2020 Meeting. We are now developing additional example exercises for use as undergraduate class exercises or problem sets in a variety of geoscience and disaster response classes.
How to tell the Story of the Earth: Three lab exercises for Historical Geology
Show Abstract »
Student engagement is easy to encourage in introductory lab courses. We have developed an open access lab book for Historical Geology. Here we focus on three different lab exercises to show how we can use simple exercises to get students engaged in research beyond simple observations. We went beyond place based learning as we have found that students are curious to learn more about places that they have not been. So, the new exercises are a global tour of geology including the Andes Mountains, Alaska, Great Britain, Brazil, Morocco, Himalayas, Denmark, Australia, New Zealand, Russia, and Canada in addition to the traditional US centric locations like the Grand Canyon, Appalachians, Texas, and Rocky Mountains as well as Mars and Jurassic Park! For example, instead of just identifying the textures and names of metamorphic rocks, there is an exercise interpreting metamorphic rocks as a result of ridge subduction in southern Alaska. Instead of just learning the sequence of phyllite, schist and gneiss, the student will put these into the context of an unusual geothermal gradient. For fossil preservation, the students compare fossils exposed around the edge of the Delaware Basin. These include delicately preserved fossils in the Glass Mountains to impressions in the Guadalupe Mountains. They need to speculate why these two exposures of the same reef have such different modes of preservation. The final exercise is to use maps and cross-sections of New Jersey to identify the geologic provinces that relate to four different tectonic events. Students in the Fall 2020 semester first used a digital, pre-release version of the labbook; a difficult semester due to the transition to online learning during the pandemic. Our focus on student engagement results in observing and thinking rather than read and repeat. This works to promote active and engaged learning with students.
A New Method of Making and Observing Rock thin-sections for Classrooms
Show Abstract »
Rock thin-sections are the essential tools for studying geology at K12 or college-level classrooms. They can change boring lectures about rocks to fascinating practices. However, due to the difficulties of preparation, there are a few attempts to use rock thin sections as teaching tools in K12 classrooms. In this regard, we try to improve such conditions using cheap, mass-produced tools, which can be purchased from DIY stores or online net shops(Okamoto, 2020b). For example, a bench grinder and a kitchen knife sharpener are used for a rock saw, and a grinder with costs less than 100USD each. Also, low-cost diamond blades and wet stones less than 30USD are employed as consumables. Our project has simplified and sophisticated the section fabrication technic to a level where even high school students can do it. At the same time, for easy watching thin sections in a classroom, we developed an alternative way instead of using high expensive polarized microscopes. Our handmade polarized units can let an ordinary microscope as a polarized one. Low-cost binocular microscopes and USB microscopes are used for this thin section watching(Okamoto, 2020a). These low-cost polarized microscopes can be used for the petrological study to identify pleochroism, interference colors, extinction angles, textures, etc. In recent days, we are uploading many thin section images with captions as an online thin section library for school use on our website (http://www.yossi-okamoto.net/index_e.html). Also, 3D printed parts and some freeware are now improving our kit-making process and thin section photography. An overview of our methods and recent developments will be presented in the meeting.
Using Field and Laboratory Studies of Pyroclastic Deposits to Engage Students in the Scientific Process and Promote Development of Professional Skills
Show Abstract »
The dynamic volcanic landscape of the Pacific Northwest provides an ideal framework for teaching undergraduate students about fundamental volcanology concepts, as well as core geoscience and professional skills. This poster describes a teaching activity, consisting of a series of linked exercises that employ field observations, data collection, and granulometric analyses to interpret pyroclastic deposits in central Oregon. Given the modular nature of this activity, different exercises can be conducted depending on the resources available to individual instructors. For the field component, students work in teams to construct a stratigraphic column, describe the characteristics of their interval, obtain samples, and collect pumice and lithic size data. In the laboratory, student groups sieve their sample and determine weights for each size fraction. As a follow-up exercise, students graph the grain-size data for all of the class samples, determine select phi values, calculate parameters using published formulas to characterize sorting, and make interpretations about the pyroclastic deposits. The culminating exercise is a writing assignment in which students, from the perspective of a USGS volcanologist, prepare a report for the Bend City Council to address regional volcanic hazards.This activity engages students in the scientific process, through observation, data analysis, and interpretation. Students gain experience communicating results in written form to a diverse audience. Team work and collaboration are built into the activity through group field and laboratory work. Student skill development can be assessed using a set of post-activity questions, which require students to graph and analyze data from unknown pyroclastic deposits and interpret their origin. Student performance on the culminating paper can also be assessed in the context of program outcomes. This activity can be used for program assessment, as it dovetails with geoscience education initiatives, emphasizing broader scale objectives of preparing future geoscientists to solve challenging problems in the 21st century.
Seeking to Recreate Lightning in a Bottle: Reflecting on Assignments Used in an Integrated Science Course for Preservice Teachers
Show Abstract »
This poster tells the story of two assignments I included in a course for preservice K-8 teachers during the 2020-2021 academic year. Both assignments had this similar broad goal: to provide an opportunity for the students to focus on their identity as future teachers. Both assignments had this structure: 1) students made a choice about the content they would read or watch; 2) students then shared their observations and reflections with a small group of classmates; and 3) the small groups then presented a synthesis of their discussion to the whole class. In the first assignment, each student selected and read a profile of a scientist featured in the "Cool Jobs" section of the "Science News for Students" website. Notably, these profiles include a diversity of individuals as well as a diversity of careers. In the second assignment, students chose at least one online, recorded, publicly-available panel discussion related to science teaching. The panel options included: 1) "The Challenge of Creating Equity in Science Education" (STEM Teacher Leadership Network); 2) "Differing Abilities in STEM" (U.S. Department of Education, Office of Elementary and Secondary Education); and 3) "Inspiring STEM Interest" (U.S. Department of Education, Office of Elementary and Secondary Education). Small group and class discussions occurred via Zoom and made use of the Jamboard application within Google. The rubrics for these assignments prompted specific details in students' reflections. In actuality, students' reflections revealed the potential for such resources to add new insights into their future role as teachers. This poster shares details of the assignments as completed by students in this initial iteration and invites viewers to discuss plans for future implementations.
Thinking about the Present and Future of Earth Education
Climate change anxiety and perceptions of complexity
Show Abstract »
Climate change is the result of complex interactions between natural science systems and social systems. For humans, climate change may have both emotional causes and emotional consequences. In this study, we asked how the perceived complexity of climate change relates to anxiety about climate change. We theorized that differences in depth of understanding of climate change captured by the perception of complexity might distinguish adaptive from maladaptive levels of climate change anxiety. We conducted online surveys with an undergraduate sample (n = 209) with measures of climate change anxiety and perceived complexity of climate change. We found no relationship between the perceived complexity of climate change and anxiety. We also conducted exploratory factor analyses of our measures. We identified three factors in our measure of climate change anxiety (general anxiety, persistence of anxiety, and difficulty regulating anxiety), and two factors in our measures of perceived complexity (the complexity of cause, and the complexity of effect). Analyses conducted with these factors found that 1) the perceived complexity of cause was negatively associated with general anxiety about climate change (the more complex they thought the problem was the less general anxiety they reported), and 2) overall levels of persistent anxiety were lower than general anxiety. Together, these suggest that students have effective strategies for regulating negative emotions about climate change, and that thinking about cause and avoiding effect may be one of these strategies. We are currently testing this hypothesis using a novel information-seeking paradigm where subjects will be presented with a complex scenario and asked to choose to learn more about the cause or the effect of the scenario. The paradigm will be followed with measures of emotional outcomes relevant to the scenario. We hypothesize that choosing to learn about cause will be associated with more positive emotional outcomes.
Secondary Teachers' Implementation of a Model-Based Climate Curriculum Unit: A Longitudinal Study
Show Abstract »
Cultivating climate literacy among students allows them to understand, communicate, and make informed decisions about the weather, climate, functions, and impacts. Next Generation Science Standards (NGSS Lead States, 2013) and the Essential Principles for Climate Literacy (NOAA, 2009), partnered with science education reform, have created teaching and learning opportunities about Earth's climate and GCC in formal K-12 classrooms. However, teachers still report feeling challenged in understanding Earth's climate system, underprepared in teaching it, describing GCC instruction as a low priority (Hestness et al., 2011; Plutzer et al., 2016). We engaged in a 3-year, NSF-funded project to design and implement a new, 3-week curriculum unit designed around an online, computer-based global climate modeling tool to address this need. Based on HS-ESS3-5 (NGSS, 2013), this geoscience curriculum engages students in an authentic exploration of the Earth's climate and GCC using the Easy Global Climate Model(EzGCM) grounded in authentic NASA climate data. We followed two secondary science teachers over three years, using a combination of interviews, classroom observations, and daily reflections to access 1) In what ways do teachers implement the project curriculum? 2) How and why do they implement it in the ways that they do? and 3) How teachers' implementation changes during the project? Our findings from this longitudinal mixed-methods study show that in Y1, while the project curriculum was primarily built to highlight the practice of using climate models, teachers focused on describing model construction. However, while this remained true for one teacher across all three years, the other teacher made significant changes to her implementation during the project. During all three years, both teachers brought external resources than those explicitly written for the CliMES curriculum. These findings have implications for curriculum design, teacher professional development, and how secondary science teachers can support student learning about Earth'sEarth's climate.
Innovative Approaches, Courses, and Resources for Earth-Science Teaching
Compass: Our first-year plan for improving the discoverability of online Earth education resources
Show Abstract »
The Science Education Resource Center (SERC) currently hosts materials from over 120 geoscience education projects and the majority of geoscience faculty report using their materials to support their teaching. However, the project-focused nature of the SERC website means that information is siloed and users have difficulty navigating the full breadth of the collections. The Compass project addresses this challenge directly. Its goal is to improve the discoverability of SERC-hosted materials as well as to connect users to earth education resources beyond SERC's own webpages. Along the way Compass will explore broader questions of how faculty explore web-based teaching resources. Compass is grounded in the principles of user-centered design. It builds on explicit understanding of and input from the community of users, evidence-informed evaluation, and repeated refinement through reflection and iteration. The project is engaging in annual cycles where improvements in SERC's discovery infrastructure are prioritized, implemented, and their efficacy evaluated. The project draws on input from a group of Community Discovery Advisors (CDAs) – stakeholders from across the geoscience education community – as well as coordination with NAGT through its Teach the Earth committee, and other outreach to community partners. The project's initial round of planning took place this spring through meetings with the CDA and informed by input gathered from the community. Here we present the outcomes of that work: the plan for the initial set of targeted improvements to SERC discovery infrastructure, as well as initial progress on implementing the plan.
Thinking about the Present and Future of Earth Education
Skills Geoscience Employers Look For in Bachelors-level Geoscientists
Show Abstract »
Preparing graduates to enter the workforce is a common goal of undergraduate geoscience degree programs. Determining what skills are necessary for new graduates to succeed in the workforce requires knowledge of the skills sought by employers of bachelors-level geoscientists. To investigate skills desired by employers, we systematically analyzed job advertisements retrieved from 4 search engines between May and November 2020. We used 15 search words derived from the 2018 Status of the Geoscience Workforce (AGI) report to select job advertisements that required or preferred a geoscience-based bachelor's degree. Additionally, we categorized each advertisement by industry sector based on definitions in the 2018 AGI report. Each job advertisement (n=1214) was coded to identify skills sought by the employer. An initial set of codes was based on skills identified by the Future of Undergraduate Geoscience Education project and additional emergent codes were identified during the coding process. We generated a final set of 34 codes, with definitions and examples, through an iterative coding process, checking for inter-rater reliability. Advertisements were not coded for geoscience content knowledge. The most common skills sought by employers were the ability to conduct field work, teamwork, work with computers, collect, process and interpret data, and communicate effectively, however, the desirability of skills varied across industry sectors. For example, teamwork skills were sought in 60% of mining sector advertisements but only 22% of oil and gas sector advertisements. Our results provide insight into the expectations of potential employers for recent graduates seeking a career in geoscience. Additionally, our results provide geoscience degree programs with critical information required to prepare undergraduates with the necessary skills to be successful in the current job market.
Innovative Approaches, Courses, and Resources for Earth-Science Teaching
What's in the Water? A place-based unit investigating PFAS contamination in central NC drinking water
Show Abstract »
The drinking water contamination crisis in Flint, MI, in 2014-2019 raised public outcry and awareness of the potential health consequences of regulatory failures and industrial threats to this essential natural resource. But students and the public alike may see such sensational stories on the news and imagine that drinking water contamination is a rare and remote occurrence. In this poster, we share a newly-developed set of place-based lessons related to ongoing drinking water contamination with PFAS chemicals in central North Carolina. Using an inquiry-oriented approach, undergraduates discover how water and contaminants move through the global, local, and urban water cycles; how regulated and established contaminants differ from emerging ones; how animal and human health studies and their inherent ambiguities are leveraged in conversations about local and national regulations; and how power and privilege play out as citizens and local government leaders grapple with if, when, and how to take action. Throughout the unit, students engage in team-based discussions, data analysis, and literature research on these ongoing issues. The unit culminates in a community-engaged project that allows students to explore multiple avenues for engaging in advocacy and partnering with local community organizations. Our lessons are developed with introductory-level university environmental science and biology courses in mind, but could easily be adapted to a high-school context. This place-based unit is localized to central North Carolina and could be adopted by other universities in the region; However, PFAS contamination is widespread across the U.S., and we will offer recommendations for colleagues interested in developing similar lessons for their own local settings.
Water in Society: A Five-Year Evaluation Study of an Interdisciplinary Course to Support Undergraduate Students' Water Literacy
Show Abstract »
To prepare students to address water-related challenges, undergraduate courses must provide them with opportunities to learn and reason about water issues. Water in Society is an introductory-level, innovative, and interdisciplinary undergraduate course offered annually at a large mid-western university from 2017 to 2020. The course focuses on both disciplinary concepts and civic engagement, and is designed around a variety of interactive, research-based practices to support students' learning, engagement with authentic data, scientific models and modeling, and collaboration and learning among peers. This study aims to evaluate, "how have students' outcomes and perceptions changed over four years of the course?". The results are based on data from students (n=212) in four consecutive years of the course. Each year, students' satisfaction with the course improved. Multiple measures are used to evaluate students' learning about water content knowledge, model-based reasoning, and socio-scientific reasoning. By the end of each iteration of the course, students improved their knowledge of hydrologic concepts, independent of their initial level. Students may need more guidance to use and interpret the results from the computer-based water models and develop socio-scientific reasoning skills for water challenges.
Building science knowledge, identities, and interest using place-based learning to engage diverse urban undergraduate and high-school students
Show Abstract »
New York's glacial history and landforms were used as an anchoring phenomenon to engage a diverse, urban population of undergraduate and high school students through place-based learning activities. Leveraging the advantages of place-based education, we sought to make content accessible to students from a variety of cultural and educational backgrounds. Place-based learning focuses on local and regional environments and has been shown to boost student engagement, be more relevant to students, and has the potential to attract underrepresented groups to science. To fully engage our students, high-needs public high school students from the Bronx and Brooklyn, and undergraduates at community college in Queens, we used strategies that provided equitable ways of learning and demonstrating knowledge. Our students in these contexts face similar challenges: learning remotely, limited science literacy, and/or newcomers acquiring English skills. We used NYC-based analogies to describe glacial landforms and processes and asked students to develop their own analogies to enhance meaning-making and student connection to content and processes. Additionally, multiple ways to demonstrate skills and understanding were included (e.g. sketching, storytelling). These practices validate and reflect the diversity, identities, and experiences of students, and communicate to students that they are valued and their varied experiences are an asset in learning. These lessons were developed for synchronous remote learning but could easily be adapted for an in-person classroom setting. Our goals were to increase students' science knowledge by developing an awareness and understanding of the landforms that shape their local environment, stimulate students' interest in science, and develop students' science identities. Changes in science knowledge were measured using a formative assessment probe (Keeley, 2008), changes in students' interest were measured using the science interest survey (Lamb et al., 2012), and changes in science identity were measured using a science identity scale (Hazari et al., 2010).
Thinking about the Present and Future of Earth Education
Water – related standards for teaching and learning to support K-12 to lifelong water literacy
Show Abstract »
Water is a critical component of Earth systems, including their human dimensions. Water literacy is a key outcome for learners, who should understand how water interacts with different human and non-human systems and to help them develop knowledge, tools, and attitudes to participate in informed decision-making that support water management efforts. It is therefore crucial to foster water literacy in today's global citizens, particularly through formal education. However, research has identified challenges in teaching and learning about water spanning K-16 settings. Water is an interdisciplinary concept that is touched on in many subject areas and disciplinary learning environments. The purpose of this research is to examine water-related standards for teaching and learning from an array of disciplines to develop a comprehensive, transdisciplinary perspective on water education. We ask, What do disciplinary standards specify as outcomes for students' learning about water?, and sub-questions i) To what extent do water-related standards address recognized domains of learning?, and ii) What thematic outcomes for students' learning are apparent across grades in water-related standards?. The study uses a conventional qualitative content analysis complemented by processes from grounded theory to analyze water-related education standards (n=262) from 12 education-oriented non-governmental organizations based in the United States. The results from the study enabled to characterize the water standards according to the cognitive and affective domains of learning, as well as to develop a matrix for water-related standards for each grade band from K-12. The results of the study can help inform teaching and learning to cultivate water literacy.
Statewide Efforts Elevate the Status of Earth Science in California K-12 Schools
Show Abstract »
For decades, California has relegated Earth science to a second-tier status. The rollout of the Next Generation Science Standards led to a shift where Earth science now takes a much more central role. After California adopted the NGSS in 2013, it began drafting its own curriculum framework to envision how the standards should be implemented in California classrooms. There was no explicit effort to elevate Earth science, but the shift grew out of two other pressures: 1) a desire for science integrated across the disciplines; and 2) environmental educators pushing for more emphasis on interactions between human and natural systems. At the high school level, we outlined a 'three course model' where students used traditional biology, chemistry, and physics concepts to explain Earth and Space science phenomena, with particular emphasis on the environmental problems of the day. Climate change is a central thread to all three of the courses. We gave the courses new names, "Living Earth", "Chemistry in the Earth System", and "Physics of the Universe". While Earth science still doesn't sit on equal footing as those three traditional science courses, districts that adopt this model elevate Earth and space science to a central role in every science course. More than half of California districts have adopted this three course model and the UC system now accepts it as a legitimate laboratory sequence. The challenge is now about implementation. Few publishers have crafted materials for the courses and teachers remain underprepared to integrate the Earth science content into the disciplines in which they hold credentials. Earth scientists have a new footing, but now we need to step up to help realize the potential of this transition.
Innovative Approaches, Courses, and Resources for Earth-Science Teaching
The Google-Earth GeoEd Video Library (GEGVL): a new, fun, and easy way to find good, place-based Geoscientific Videos for Teaching and Self-Education
Show Abstract »
To enhance expert-made and effective geoscience educational (GeoEd) videos more accessible for teachers and students, we built a place-based, geoscientist-reviewed GeoEd video library based on the widely-used Google Earth platform. Earth science topics are typically complex in terms of location, timing, and how these are best explained, and are often related to a specific location or region that is intrinsically interesting. The Google Earth GeoEd Video Library (GEGVL) provides a "clickable" index of high-quality, place-based geoscience videos that are geospatially organized in Google Earth as a first-level visual index. The global map shows where the content of these GeoEd videos focuses, allowing students and teachers to "roam" the Earth to find videos about places or events that interest them. Our approach links student knowledge of key processes with places they know or that interest them and uses a platform that requires no learning curve. GEGVL also provides a way for geoscience instructors to quickly find high-quality GeoEd videos to use in the classroom. We are beginning to populate GEGVL. The link for the sample GeoEd Video Library (KMZ file) is https://drive.google.com/file/d/1UYy-Rn7V7Yp6AZ4plrZkZypHQ28nZohK/view?usp=sharingWe invite contributions to GEGVL from all geoscientists; please contact the first author for more information.
Thinking about the Present and Future of Earth Education
Envisioning the future of NAGT
Show Abstract »
NAGT ended fiscal year 2020 with 1,711 members—our highest number in more than 15 years and an increase of 111 members over 2019. In 2020 and 2021, the COVID pandemic has highlighted some of our strengths as an organization: we are nimble and responsive to current needs in the community, we have a deep and rich set of online resources that can be enhanced with new ideas and content, and we are experienced in offering online professional development activities and know what it takes to make these effective. However, 2020 also brought challenges to the organization and to our members, and highlighted some of our weaknesses. One of those weaknesses is the lack of a current strategic plan to help guide our goal-setting and decision-making. The last time NAGT went through a strategic planning process was over ten years ago, and the organization has changed considerably since then. A current, robust strategic plan will outline goals in areas like reach, diversity, and impact of programming and allow us to set benchmarks against which we can measure our progress annually. We began the strategic planning process by conducting a member survey at the end of 2020, and continue to seek feedback from our members about their interactions with the organization. In this interactive poster, I will share results of the survey and strategic planning updates, and seek additional input from members.
Enhancing Teaching and Learning about the Food-Energy-Water-Nexus: Who are Postsecondary Reformers in NC-FEW?
Show Abstract »
Food, energy and water (FEW) are critical systems for humanity and subject to rapidly growing global demand compounded by climate change. The inter-dependency among these resources is multifaceted and complex, requiring an effective and coordinated Nexus approach. These challenges provide a rationale for sustained, systemic, and interdisciplinary educational efforts focused on food, energy and water systems in a wide array of educational contexts. The National Collaborative for Research on Food, Energy, and Water Education (NC-FEW) is an NSF-funded, emergent, transdisciplinary community of postsecondary educators and discipline-based education researchers from diverse disciplinary backgrounds engaged in sustained network- and capacity-building. Here, we present preliminary findings from an onboarding survey of 165 members of the NC-FEW community, primarily postsecondary faculty from a diverse array of disciplines, to better understand the depth of their FEW-Nexus knowledge base, confidence with FEW-Nexus teaching and education research, and sense of community affiliation. Results show that NC-FEW members are able to characterize FEW-Nexus concepts with approximately 56.57% accuracy. Participants were more confident about general teaching & research abilities (Mean=3.8) than with FEW-Nexus teaching & research proficiency (Mean=3.3). One-way ANOVA test showed a statistically significant effect of 'Professional Roles' and 'Disciplinary Identities' on FEW-Nexus teaching and research confidence at p<.05 level. Also, results demonstrate that participants feel connected to the community of FEW-Nexus educators only 'To some extent' (Mean= 2.28). Multiple regression analysis indicated positive impact of community interaction on teaching confidence, research confidence, and sense of belongingness to the community and vice-versa. These findings highlight the importance of boosting members' confidence and strengthening their sense of community affiliation to enhance their knowledge of the FEW-Nexus, as well as their Nexus-focused teaching and education research , therefore having important implications for ongoing NC-FEW community activities and broader postsecondary reform efforts.
Innovative Approaches, Courses, and Resources for Earth-Science Teaching
Educational Resources to support ShakeAlert®, the Earthquake Early Warning System for the West Coast of the United States: Development and Assessment
Show Abstract »
Over 143 million people live in an earthquake prone region of the United States. Over 55 million people (or one-third) live in Washington, Oregon, and California, face much of this earthquake hazard and risk. In light of this, the U.S. Geological Survey and partners developed the Advanced National Seismic System's ShakeAlert® Earthquake Early Warning system for the West Coast of the United States to detect significant earthquakes quickly. A ShakeAlert Message is sent to delivery partners to alert people and automated systems. IRIS and UNAVCO, in collaboration with the USGS and ShakeAlert® system partners at large, are developing a suite of educational activities and animations designed to inform and engage multiple audiences, from middle school students through senior citizens in a range of learning environments.The suite of learning materials provides learners in formal and free-choice settings with a suite of scientifically accurate educational resources on earthquake hazards, particularly on the west coast. Short (2-3 minute) animations and scaffolded activities address earthquake concepts, related natural hazards (e.g., tsunamis, volcanoes, and landslides), mitigation and planning, and how earthquake early warning works. Animations show learners what to do in the event of an earthquake, how to respond to a ShakeAlert system message, and how the Shakelert system works. Each activity provides 5-, 15-, and 30-45 minute options to fit various learning settings. Activities address misconceptions about earthquakes, such as the relationship between an earthquake's magnitude and its intensity. Partners at the Oregon Museum of Science and Industry are leading ongoing evaluation and assessment of the effectiveness of our educational resources and to help build our resources with cultural inclusion in mind. Here we present the ShakeAlert educational activities and animations, available through ShakeAlert.org, developed to date, and our preliminary assessment tools.