Teaching Activities

These teaching activities have a strong spatial thinking component. Search the collection to find activities suitable for your classes.




Current Search Limits:

Results 1 - 20 of 356 matches

Converging Tectonic Plates Demonstration
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Plate Tectonics: GPS Data, Boundary Zones, and Earthquake Hazards
Christopher Berg, Orange Coast College; Beth Pratt-Sitaula, EarthScope; Julie Elliott, Michigan State University
Students work with high precision GPS data to explore how motion near a plate boundary is distributed over a larger region than the boundary line on the map. This allows them to investigate how earthquake hazard ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Lecture Tutorials for Introductory Physical Geology
Eileen Herrstrom, University of Illinois at Urbana-Champaign
These activities take place in a lecture setting and require ~5-10 minutes to complete. Students apply lecture topics directly to answer questions, interpret maps and photographs, perform calculations, and plot ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Let's Look Inside the Earth
David Zelenka
Students will analyze USGS seismology data in the classroom using spreadsheets and scatter plots to look for patterns and structure in the Earth's crust. Before analyzing data, students will learn about the ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Ground Motion with GPS: How GPS Works
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Virtual Geological Mapping Field Trip - Glens of Tekoa, New Zealand
Travis Horton, University of Canterbury; Katherine Pedley
Geological mapping involves the observation, recording, presentation and interpretation of field data, all fundamental skills required by practicing geologists. This virtual geological mapping exercise enables ...

Online Field Experience Exemplary Collection This activity is part of the Teaching with Online Field Experiences Exemplary collection
See the activity page for details.

Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Seafloor Spreading: Bathymetry, Anomalies, and Sediments
Eileen Herrstrom, University of Illinois at Urbana-Champaign
This activity takes place in a laboratory setting and requires ~1.5-2 hours to complete. Students study the bathymetry of the South Atlantic, use magnetic reversals to interpret marine magnetic anomalies, and ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Topographic differencing: Earthquake along the Wasatch fault
Chelsea Scott, Arizona State University at the Tempe Campus
After a big earthquake happens people ask, 'Where did the earthquake occur? How big was it? What type of fault was activated?' We designed an undergraduate laboratory exercise in which students learn how ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Mid-Atlantic Appalachian Orogen Traverse – Field Trip 1
Steve Whitmeyer, James Madison University
The Mid-Atlantic Appalachian Orogen Traverse is a series of 4 virtual field trips that cross the Blue Ridge and Valley and Ridge geologic provinces in northwestern Virginia and northeastern West Virginia. This ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Exploring Tectonic Motions with GPS
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change 

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Fault Models for Teaching About Plate Tectonics
Modified from an activity by Larry Braile (Purdue University) by TOTLE (Teachers on the Leading Edge) Project and further improved by ShakeAlert.
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Earthquake Machine
IRIS (Incorporated Research Institutions for Seismology) and ShakeAlert
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

World Map of Plate Boundaries
Bonnie Magura (Portland Public Schools) and Chris Hedeen (Oregon City High School)
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Mapping Plate Tectonic Boundaries
Nathan Toke, Utah Valley University
In this classroom activity, students will work in groups to observe how patterns of topography, bathymetry, earthquake locations and depths, and the location of volcanoes vary across regions of the Earth. They will ...

Tectonic Plates Life Cycle Drag and Drop
Beverly Owens, Cleveland Early College High School; Molly Ludwick, Kings Mountain Middle School
This activity will allow students to manipulate Google slide textboxes to explore different features of tectonic plates and their interactions.