Teaching Activities
These teaching activities have a strong spatial thinking component. Search the collection to find activities suitable for your classes.
Resource Type: Activities Show all
Results 81 - 100 of 5949 matches
Erosion in a River
Nicole LaDue, Northern Illinois University
× Formative assessment questions using a classroom response system ("clickers") can be used to reveal students' spatial understanding. Students are shown these diagrams and instructed to ...
Learn more about this review process.
Plate Tectonics: GPS Data, Boundary Zones, and Earthquake Hazards
Christopher Berg, Orange Coast College; Beth Pratt-Sitaula, EarthScope; Julie Elliott, Michigan State University
Students work with high precision GPS data to explore how motion near a plate boundary is distributed over a larger region than the boundary line on the map. This allows them to investigate how earthquake hazard ...
Learn more about this review process.
Teleconnections
Kaitlin Farrell, University of Georgia; Cayelan Carey, Virginia Polytechnic Institute and State Univ
Ecosystems can be influenced by teleconnections, in which meteorological, societal, and/or ecological phenomenon link remote regions via cause and effect relationships. Because it is difficult to predict how ...
Learn more about this review process.
Activity 6: Creating a Systems Diagram
Cameron Weiner, Middlebury College
In this activity students learn the steps to create a systems diagram and then apply those steps to create a systems diagram of the wastewater system. Students are provided with additional written information that ...
Learn more about this review process.
Example Bisection Method Problem in MATLAB Grader
Roche de Guzman, Hofstra University
Here's an example of a text book problem in Numerical Methods that was converted to a MATLAB Grader assignment to assess students in a more automated and interactive way. Other problems can be modeled and ...
Learn more about this review process.
Solving a Simple Drug Delivery Model Using Analytical, Linear Algebra, and Numeric Approaches
Matthew Leineweber, San Jose State University
The delivery of orally ingested drugs, such as pills and capsules, can be roughly modeled as a system of first-order ordinary differential equations (ODEs). This type of "drug-delivery model" can be ...
Learn more about this review process.
Water Quality Module
This module was initially developed by Castendyk, D. and Gibson, C. 30 June 2015. Project EDDIE: Water Quality. Project EDDIE Module 6, Version 1. cemast.illinoisstate.edu/data-for-students/modules/water-quality.shtml. Module development was supported by NSF DEB 1245707.
Water quality is a critical concept for undergraduate students studying Earth Sciences, Biology, and Environmental Sciences. Many of these students will be asked to assess the impacts of a proposed anthropogenic ...
Learn more about this review process.
Introduction to strings and DNA/protein sequence alignments
Benjamin Bratton, Vanderbilt University
This is problem set that helps solidify concepts of computational processing (accessing data, parsing data, visualizing data, using preconstructed tools) and sequence matching, specifically in the context of ...
Learn more about this review process.
Reef Builders through Time
Peg Yacobucci, Bowling Green State University-Main Campus
Students will use the Paleobiology Database (PBDB) to explore the history of reef-building animals through time. They will document diversity and extinction patterns through time for seven reef-building marine ...
Learn more about this review process.
Module 4: Global Records of Climate Change - The Deep Sea and Ice Cores
Russell Graham, Pennsylvania State University-Main Campus
In this module, students explore and analyze records of past climate. In the first part of the module, students are given background information about long-term records of Earth's climate: deep sea sediment cores and ice cores. Students are also introduced to Oxygen isotopes and how they are used as records of past climate. Students complete a set of exercises that assess their understanding of the material and ask them to analyze data about the Laurentide Ice Sheet using the Neotoma Explorer. In the second part of the module, students examine Antarctic ice core data and apply their knowledge from the beginning of the module. Part of the Neotoma Education Modules for Biotic Response to Climate Change.
Learn more about this review process.
Population & Community Ecology
Cascade Sorte, University of California-Irvine
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.
Learn more about this review process.
Exploring Tectonic Motions with GPS
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change
Learn more about this review process.
Volcano Monitoring with GPS: Westdahl Volcano Alaska
Maite Agopian, EarthScope; Beth Pratt-Sitaula, EarthScope
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...
Learn more about this review process.
Alaska Earthquake Hazard Inventory & Mitigation Planning
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.
Learn more about this review process.
Base Isolation for Earthquake Resistance
Larry Braile (Purdue University) and TOTLE (Teachers on the Leading Edge) Project
This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.
Learn more about this review process.
Tsunami Vertical Evacuation Structures (TVES)
Bonnie Magura (Portland Public Schools), Roger Groom (Mt Tabor Middle School), and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program)
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.
Learn more about this review process.
Alaska GPS Analysis of Plate Tectonics and Earthquakes
Beth Pratt-Sitaula, EarthScope
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.
Learn more about this review process.
Building Shaking —Variations of the BOSS Model
IRIS (Incorporated Research Institutions for Seismology), FEMA (Federal Emergency Management Administration), ShakeAlert, Chris Hedeen (Oregon City High School), and ANGLE Project
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.
Learn more about this review process.
Build a Better Wall
FEMA (Federal Emergency Management Administration) and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program). Improvements by ShakeAlert.
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
Learn more about this review process.
Seismic Slinky: Modeling P and S waves
IRIS (Incorporated Research Institutions for Seismology)
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Learn more about this review process.