Classroom Activities
Results 1 - 20 of 174 matches
Unit 1: Exploring Harrier Meadow, an Urban Wetland System part of Evaluating the Health of an Urban Wetland Using Electrical Resistivity
Students will conduct a virtual exploration of Harrier Meadow, a salt marsh in the New Jersey Meadowlands. They will identify its vulnerability to pollution, its tidal connection to the Hackensack Estuary and the ...
Learn more about this review process.
Unit 5: Integrated Geophysical Interpretation and Comparison with Ground Truthing part of Evaluating the Health of an Urban Wetland Using Electrical Resistivity
In this unit, students explore spatial associations between the three-dimensional electromagnetic (EM) conductivity inversions and the visible patterns of Salicornia (pickleweed) introduced in Unit 1, Exploring ...
Learn more about this review process.
Unit 2: Geophysical Properties of the Subsurface part of Evaluating the Health of an Urban Wetland Using Electrical Resistivity
Archie (1950) defined the term petrophysics to describe the study of the physics of rocks, particularly with respect to the fluids they contain. Although originally focused on geophysical exploration, petrophysics ...
Learn more about this review process.
Unit 4: The Magic of Geophysical Inversion part of Evaluating the Health of an Urban Wetland Using Electrical Resistivity
This unit introduces the student to the concept of geophysical inversion, which is the process of estimating the geophysical properties of the subsurface from the geophysical observations. The basic mechanics of ...
Learn more about this review process.
Unit 3: Codorus Creek Case Study: Measuring and Interpreting Seismic Refraction Data part of Measuring Depth to Bedrock Using Seismic Refraction
This unit presents an applied case study example and the associated concepts related to designing a seismic survey and analyzing the data. It discusses parts of the instrument and presents practical experience ...
Learn more about this review process.
Unit 3: Field Geophysical Measurements part of Evaluating the Health of an Urban Wetland Using Electrical Resistivity
Near-surface geophysical measurements are performed by moving sensors across the earth's surface. Active geophysical sensors transmit a signal into the earth and record a returned signal that contains ...
Learn more about this review process.
Exploring Tectonic Motions with GPS part of EarthScope ANGLE:Educational Materials:Activities
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change
Learn more about this review process.
Volcano Monitoring with GPS: Westdahl Volcano Alaska part of EarthScope ANGLE:Educational Materials:Activities
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...
Learn more about this review process.
Base Isolation for Earthquake Resistance part of EarthScope ANGLE:Educational Materials:Activities
This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.
Learn more about this review process.
How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.
Learn more about this review process.
Building Shaking —Variations of the BOSS Model part of EarthScope ANGLE:Educational Materials:Activities
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.
Learn more about this review process.
Alaska GPS Analysis of Plate Tectonics and Earthquakes part of EarthScope ANGLE:Educational Materials:Activities
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.
Learn more about this review process.
Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
Learn more about this review process.
World Map of Plate Boundaries part of EarthScope ANGLE:Educational Materials:Activities
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.
Learn more about this review process.
Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Learn more about this review process.
Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Learn more about this review process.
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Learn more about this review process.
Earthquake Machine part of EarthScope ANGLE:Educational Materials:Activities
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.
Learn more about this review process.
Understanding Earthquakes: Comparing seismograms part of EarthScope ANGLE:Educational Materials:Activities
Introductory lesson that contextualizes how multiple instruments provide a more complete picture on an event.
Groundwater Lab: online version part of Teach the Earth:Teaching Activities
This is a version of the Groundwater Lab (https://serc.carleton.edu/NAGTWorkshops/intro/activities/23416.html) previously shared as part of the Teaching Introductory Geology collection. It uses an online ...