Teaching Activities

These teaching activities have been submitted by participants in Cutting Edge workshops and all have to do with Structural Geology, Geophysics, and/or Tectonics. You can narrow the view by using the free-text search box as well as by selecting terms from the list on the right. This will allow you to see a particular slice through the collection.


Help

Results 1 - 10 of 668 matches

Geology of Yosemite Valley
Nicolas Barth, University of California-Riverside
This is a four-part module designed to be flexible in duration and student grade-level. (1) Geology of Yosemite Valley Virtual Field Trip. A 43-stop web-based Google Earth tour with embedded views, hyperlinked ...

Subject: Geology: Geoscience:Geology:Geomorphology:GIS/Mapping/Field Techniques, Geoscience:Geology:Structural Geology
Online Field Experience Exemplary Collection This activity is part of the Teaching with Online Field Experiences Exemplary collection
See the activity page for details.

Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics
Shelley Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.

Subject: Geology: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Lecture Tutorials for Introductory Physical Geology
Eileen Herrstrom, University of Illinois at Urbana-Champaign
These activities take place in a lecture setting and require ~5-10 minutes to complete. Students apply lecture topics directly to answer questions, interpret maps and photographs, perform calculations, and plot ...

Subject: Geology: Geoscience:Geology:Tectonics
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Converging Tectonic Plates Demonstration
Shelley Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.

Subject: Geology: Geoscience:Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Geography:Geospatial, Environmental Science:Natural Hazards:Earthquakes
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring the Inclination and Declination of the Earth's magnetic field with a smartphone
Avradip Ghosh, University of Houston-University Park
The poles of the Earth's magnetic field are not precisely aligned with the geographic north and south poles and, in fact, vary continuously. This activity introduces to students the Earth's magnetic ...

Subject: Geology: Geoscience:Geology:Geophysics:Magnetism/Paleomag
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Ground Motion with GPS: How GPS Works
Shelley Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.

Subject: Geology: Geography:Geospatial, Geoscience:Geology:Tectonics, Geophysics:Geodesy
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics
Shelley Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.

Subject: Geology: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics
Shelley Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.

Subject: Geology: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards, Geoscience:Geology:Tectonics, Geoscience
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Geologic Mapping of a Virtual Landscape II - Three River Hills
Mark Helper, The University of Texas at Austin
This second virtual mapping exercise builds on the first (Geologic Mapping of a Virtual Landscape), but contains a more complicated geological puzzle to solve. This virtual landscape is also much larger, with a ...

Subject: Geology: Geoscience:Geology:Sedimentary Geology:Sediments and Sedimentary Rocks, Stratigraphy, Geoscience:Geology:Structural Geology:Folds/Faults/Ductile Shear Zones
Online Field Experience Exemplary Collection This activity is part of the Teaching with Online Field Experiences Exemplary collection
See the activity page for details.

Mid-Atlantic Appalachian Orogen Traverse – Field Trip 1
Steve Whitmeyer, James Madison University
The Mid-Atlantic Appalachian Orogen Traverse is a series of 4 virtual field trips that cross the Blue Ridge and Valley and Ridge geologic provinces in northwestern Virginia and northeastern West Virginia. This ...

Subject: Geology: Geoscience:Geology:Tectonics
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.