Examples
Subject: Geoscience
Results 1 - 10 of 118 matches
Nitrate Levels in the Rock Creek Park Watershed, Washington DC, 1: Measures of Central Tendency part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students examine the histogram of a positively skewed data set and calculate its mean, median and mode.
What Does the Mean Mean? Describing Eruptions at Riverside Geyser, Yellowstone National Park part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum/Geology of National Parks module. Students study measures of central tendency in a bimodal dataset of eruption intervals.
Deciviews from Look Rock, Great Smoky Mountains National Park: How Hazy is it? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze index and standard visual range from concentrations of particulate matter.
What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.
Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.
Bubbles in Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.
How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.
Carbon Sequestration in Campus Trees part of Spreadsheets Across the Curriculum:General Collection:Examples
Spreadsheets Across the Curriculum module. Students use allometric relationships to calculate tree mass from trunk diameter in a stand of trees in the Pacific Northwest.
Dunes, Boxcars, and Ball Jars: Mining the Great Lakes Shores part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students estimate the volume of sand in Hoosier Slide, a large dome-shaped dune quarried away in the 1920s from what is now Indiana Dunes National Lakeshore. They also estimate the number of boxcars to carry the sand, and the number of Ball jars produced from it.
Yellowstone! A National Park on a Hot Spot part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students use foundational math to study the velocity of the North American Plate over the hot spot, the volume of eruptive materials from it, and the recurrence interval of the cataclysmic eruptions.