More Ways to Navigate

Projects and Collaborations
Find projects on which SERC is a leader or collaborator

Search all of SERC

Evolution Activities

Refine the Results↓

Subject Show all



Current Search Limits:
Biology > Genetics

Results 1 - 8 of 8 matches

Teaching Molecular Evolution and Phylogenetics
Nathan Lents, CUNY John Jay College Criminal Justice
This activity uses DNA sequences, protein sequence, and chromosome-density maps to re-trace the ancestry of humans and some of their closest relatives.

Molecular Techniques in Ecology and Evolution
steven kimble, Towson University
Microbiomes are the huge communities of microbes that live in and on host organisms, and are typically intimately involved with the host in myriad ways, including in immune, metabolic, and behavior functions. As ecosystems, these microbiomes are sensitive to changes in their environments, such as host aging, disease state, or contact with pollutants. They could therefore be used as bioindicators of host health, but the membership and functions of microbiomes are poorly understood in almost all creatures, especially reptiles and amphibians. In this CURE we use modern field, laboratory, and bioinformatic tools to describe and analyze the microbiomes of non-model organisms such as frogs, turtles, and reef fish.

Searching Genbank
Jeff Bell, California State University-Chico
An active problem-based assignment that uses the Genbank database to teach the basics of molecular biology and molecular evolution

Genome Solver: Microbial Comparative Genomics
Gaurav Arora, Gallaudet University
Genome Solver began in 2011 as way to teach Bioinformatics tools to undergraduate faculty. As part of the Genome Solver project as a whole, we developed a Community Science Project (CSP) for faculty and students to join. The CSP explores horizontal gene transfer (HGT) between bacteria and the phages that infect them. Students get involved in this project and develop testable hypotheses about the role HGT between bacteria and phages play in microbial evolution. Our own work has demonstrated that undergraduates can produce publishable data using this approach. We invite faculty and their students to participate in the search for additional evidence of this type of HGT by investigating the vast wealth of phage and bacterial sequences currently in databases. All that is needed is a computer, an Internet connection, and enthusiasm for research. Faculty and students can work on an organism of interest or we can help them pick organisms to explore these phenomena. By pooling all of the information from a variety of small projects under the umbrella of the Genome Solver CSP, we will be able to better understand the role of HGT in bacterial evolution.

MCC: Malate Dehydrogenase CUREs Community
Ellis Bell, University of San Diego
The Malate Dehydrogenase CUREs Community (MCC) project is designed to facilitate the adoption of effective, protein‐centric, Course Based Undergraduate Research Experiences (CUREs) into teaching labs at a wide variety of undergraduate serving institutions. (Primarily Undergraduate Institutions, Research Intensive Universities and Community Colleges) MCC coordinates and conducts pedagogical research into two major features of CUREs:1) their duration (whole semester versus 5‐6 week modules incorporated into a lab class), and 2) the impact of scientific collaboration between institutions (a key aspect of much modern research). Using validated assessment tools we seek to establish their effects on student confidence, persistence in STEM, and ability to design research experiments and interprete data. To facilitate faculty adoption of CURE approaches the project provides a number of resources. These focus on a variety of research areas related to Malate Dehydrogenase including mechanisms of catalysis and regulation, adaptation and evolution, cofactor specificity, folding and stability and interactions in metabolons. Resources include biologics, experimental protocols and assessment tools. The project also coordinates interactions between courses at different institutions to allow incorporation of scientific collaboration into CUREs. These collaborations also facilitate the use of more sophisticated experimental approaches and broaden the experimental scope of the CUREs.

Genomics Education Partnership
Laura Reed, The University of Alabama; Katie Sandlin, The University of Alabama
The goal of the Genomics Education Partnership is to provide opportunities for undergraduate students to participate in genomics research. GEP is a collaboration between a growing number of primarily undergraduate institutions, the Biology Dept and Genome Center of Washington University in St. Louis, and the Biology Dept at the University of Alabama. Participating undergraduates learn to take raw sequence data to high quality finished sequence, and to annotate genes and other features, leading to analysis of a question in genomics and research publication. GEP organizes research projects and provides training/collaboration workshops for PUI faculty and teaching assistants.

Genome to phenome: DNA-protein interactions involved in butterfly wing colored development
Michelle Borrero, University of Puerto Rico
We are interested in understanding the genomic mechanisms underlying morphological differences within species. We will use the wing color pattern of Heliconius erato as a model. We have developed a Course-based undergraduate research experience (CURE) that will engage undergraduate biology majors in the identification and purification of transcription factors in butterfly wing development. Through this experience students will be able to use the knowledge and concepts from the literature to make and defend decisions, explain the role of DNA binding proteins in the genome to phenome relationship and recognize the application and utility of the techniques used in the research for their career development.

Judi Roux: BIOL 1001: Biology and Society at University of Minnesota Duluth
Judi Roux, University of Minnesota-Duluth
Even though Biology and Society has a large student enrollment, I prefer that students are actively engaged with the course topics and with each other rather than always listening to a PowerPoint lecture. At the beginning of the semester, students were assigned to teams of four using the CATME Team-maker surveys at http://info.catme.org/ Students worked in these teams during lab activities and specific classroom activities. With my fall course, I began to implement case studies to introduce and engage students with required topics, so I appreciated that case studies were available for certain activities within the modules.