InTeGrate Modules and Courses >Future of Food > Student Materials > Module 5: Soils as a Key Resource for Food Systems > Module 5.2: Soil Nitrogen and Phosphorus: Human Management of Key Nutrients > What is Nutrient Cycling?
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Future of Food Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.

What is Nutrient Cycling?

In module four, and in your education previous to this course, you've learned about the water cycle, in which water evaporates from bodies of water, condenses into clouds, and then is returned as rain to drain again into groundwater, lakes, and oceans. Each of the major crop nutrients, and most chemical elements on the earth's surface, has a similar cycle in which the nutrient is transported and transformed from one place to another, spending time in different 'pools', analogous to the division of water into lakes, rivers, clouds, rain, and the ocean. Just as rainwater and groundwater may be of more immediate use to crop plants than the ocean, different pools of the same nutrient differ in availability to plants. For example, most soils hold a tremendous amount of nitrogen in large organic molecules, but only the smaller soluble pool, and some smaller molecular forms of N, are directly available to plants. The way that soil nutrients move through the earth system, including within food production systems, is called nutrient cycling. The objective of this module is for you to understand the main features of nitrogen (N) and phosphorus (P) cycling in human-managed soils. Earth scientists sometimes use the term "biogeochemical cycling" to emphasize that each nutrient's cycle represents the geological and atmospheric sources of the nutrients, the biology of organisms that often transform nutrients from one form to another, and the chemical nature and interactions of each element.

As an example of biogeochemical cycling, think of the important element carbon (C). Carbon has a chemical nature that allows it to be a fundamental molecular building block for all living things. In addition, there is an impressive atmospheric pool (a sort of geologic pool) of non-organic carbon dioxide. Interacting with this atmospheric pool, green plants and algae play a fundamental role in turning atmospheric CO2 into biologicalorganic carbon in living things and the remains of living things, such as plants, that fall back into the soil. Scientists refer to this large set of interacting parts with geological, biological, and chemical attributes, earth's system that "processes" and recycles carbon in a certain sense, as the biogeochemical C cycle. Another example is phosphorus (P), which will be described in more detail on the following pages: The earth's crust is the primary source of all P, which is then weathered by geological and biological processes and also in human fertilizer factories, held or retainedstrongly by soil clay minerals after application by farmers, and eventually occupies a key role in every living thing as one of the elements within the DNA molecules encoding our genes. It's essential to realize that humanity and human systems are now major players within these nutrient cycles including C, P, and nitrogen. We can see this in activities such as mining (and eventually threatened depletion) of phosphorus sources for fertilizers, or fixing of large amounts of nitrogen for fertilizers with a massive expenditure of energy and emission of carbon dioxide through the use of oil and gas.


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »