What geoscience experts and novices look at and what they see when viewing geoscience data visualizations
Tuesday
2:30pm
REC Center Large Ice Overlook Room
Oral Presentation Part of
Geoscience Education Research II
This study investigated how geoscience novices and experts approach data visualizations made from an important type of geoscience data: shaded relief images made from a digital elevation model using a scientists' data visualization tool. The novices were undergraduate psychology students with little to no Earth Science education. The experts had at least ten years of professional research experience. Participants viewed a global map and then four high-resolution maps, showing portions of the mid-Atlantic Ridge, the Valley & Range province, the Columbia River and tributaries, and a cluster of seamounts. Their gaze location was recorded by an eye-tracker, and their voice and gestures were video-recorded as they answered questions designed to probe their observations and interpretations.
Not unexpectedly, all experts were more skillful than any of the novices at describing and explaining what they were seeing. However, the novices showed a wide range of performance. Along the continuum from weakest novice to strongest expert, proficiency developed in the following order: making qualitative observations of salient features, making simple interpretations, making quantitative observations.
The eye-tracking analysis examined how the experts and novices invested 20 seconds of unguided exploration, after the image came into view but before the experimenter began to ask questions. On the cartographic elements of the images, experts and novices allocated their exploration time differently: experts invested proportionately more fixations on the latitude and longitude axes, while students paid more attention to the color bar. In contrast, within the parts of the image showing the actual geomorphological data, experts and novices on average allocated their attention similarly, attending preferentially to the geologically significant landforms. Combining their spoken responses with their eye-tracking behavior, we conclude that the experts and novices are looking in the same places but "seeing" different things.
Not unexpectedly, all experts were more skillful than any of the novices at describing and explaining what they were seeing. However, the novices showed a wide range of performance. Along the continuum from weakest novice to strongest expert, proficiency developed in the following order: making qualitative observations of salient features, making simple interpretations, making quantitative observations.
The eye-tracking analysis examined how the experts and novices invested 20 seconds of unguided exploration, after the image came into view but before the experimenter began to ask questions. On the cartographic elements of the images, experts and novices allocated their exploration time differently: experts invested proportionately more fixations on the latitude and longitude axes, while students paid more attention to the color bar. In contrast, within the parts of the image showing the actual geomorphological data, experts and novices on average allocated their attention similarly, attending preferentially to the geologically significant landforms. Combining their spoken responses with their eye-tracking behavior, we conclude that the experts and novices are looking in the same places but "seeing" different things.