Using Google Earth to Teach Complex Earth Science Concepts
Thursday
11:30am-1:30pm
UMC Aspen Rooms
Poster Presentation Part of
Digital Geology and Visualization
Author
Laurel Goodell, Princeton University
Google Earth offers an engaging environment for exploration of earth science data by students at any level. The following GE layers (with data sources) have been collected/compiled by the author: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).
These layers, combined with simple spreadsheet and graphing tools, can be used for a wide variety of inquiry-based, data-rich exercises adaptable for introductory and upper-level activities. Exercises developed by the author are freely available for non-commercial use and include: exploration of topographic, seismic and volcanic characteristics of plate boundaries; determination and comparison of short-term and long-term average plate velocities; visualizing relative motion across plate boundaries; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions.
For example, students can use seafloor age data to determine plate velocities away from mid-ocean ridges. Or, students can use data from multiple hot spot tracks and make the case for stationary plumes/moving plates vs. stationary plates/moving plumes. And even at the introductory-level, students can visualize first P-wave motion patterns and relate focal plane solutions back to plate boundary settings.
These layers, combined with simple spreadsheet and graphing tools, can be used for a wide variety of inquiry-based, data-rich exercises adaptable for introductory and upper-level activities. Exercises developed by the author are freely available for non-commercial use and include: exploration of topographic, seismic and volcanic characteristics of plate boundaries; determination and comparison of short-term and long-term average plate velocities; visualizing relative motion across plate boundaries; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions.
For example, students can use seafloor age data to determine plate velocities away from mid-ocean ridges. Or, students can use data from multiple hot spot tracks and make the case for stationary plumes/moving plates vs. stationary plates/moving plumes. And even at the introductory-level, students can visualize first P-wave motion patterns and relate focal plane solutions back to plate boundary settings.