Place-Based and Culturally Valid Geoscience Curriculum and Assessment Development
Wednesday
11:30am-1:30pm
UMC Aspen Rooms
Poster Presentation Part of
Teaching for Diversity and Recruitment Strategies
Authors
Steven Semken, Arizona State University at the Tempe Campus
Emily Geraghty Ward, University of Colorado at Boulder
Julie Libarkin, Michigan State University
Place-based (PB) methods of teaching geoscience leverage sense of place (meanings and attachments affixed to places) of students and instructors, as they are situated in surrounding environments and landscapes, infuse local and indigenous ways of knowing, and engage with regional and local issues bearing on environmental and cultural sustainability. There is increasing research interest in this approach, and some studies have shown that PB teaching fosters greater participation in geoscience studies and careers by underrepresented indigenous students, while also appealing to mainstream students. We present a survey of research on PB teaching and a set of practices for PB curriculum design.
Authentic assessment closes the circle on effective PB teaching. One can measure changes in sense of place as a learning outcome using valid psychometric surveys. Assessment of geoscience content learning presents a different problem. If valid published instruments are used for this purpose, cultural discordance is possible, as these assessments are usually written by educators and scientists from mainstream cultural perspectives. Such instruments may contain concepts or language that are unfamiliar, confusing, contradictory, or even offensive to students from different cultural traditions, such as Native Americans. Cultural discordance can compromise the validity of such instruments to assess learning in such student groups. Cultural validation is a research-based and tested method that minimizes the cultural discordance of assessment instruments while retaining other forms of validity and following best practices for assessment design. We demonstrate a cultural validation method that we have successfully used to produce culturally informed and richly PB versions of items from the Geoscience Concept Inventory and other instruments. The process incorporates systematic review and recommendations from cultural experts and culturally knowledgeable students in a collaborative, iterative process of item revision. The result is a set of assessment items that retain content validity while maximizing cultural validity.
Authentic assessment closes the circle on effective PB teaching. One can measure changes in sense of place as a learning outcome using valid psychometric surveys. Assessment of geoscience content learning presents a different problem. If valid published instruments are used for this purpose, cultural discordance is possible, as these assessments are usually written by educators and scientists from mainstream cultural perspectives. Such instruments may contain concepts or language that are unfamiliar, confusing, contradictory, or even offensive to students from different cultural traditions, such as Native Americans. Cultural discordance can compromise the validity of such instruments to assess learning in such student groups. Cultural validation is a research-based and tested method that minimizes the cultural discordance of assessment instruments while retaining other forms of validity and following best practices for assessment design. We demonstrate a cultural validation method that we have successfully used to produce culturally informed and richly PB versions of items from the Geoscience Concept Inventory and other instruments. The process incorporates systematic review and recommendations from cultural experts and culturally knowledgeable students in a collaborative, iterative process of item revision. The result is a set of assessment items that retain content validity while maximizing cultural validity.