Earthquake Magnitude - Linking Earthquake Magnitude and Intensity
Initial Publication Date: July 5, 2007
Summary
An activity that helps students link earthquake magnitude and intensity.
Context
Audience
This is used in an introductory geoscience course for non-majors with a sizable seismology component.
Designed for an introductory geology course
Designed for an introductory geology course
Skills and concepts that students must have mastered
Knowledge of some basic vocabulary, such as magnitude and acceleration.
How the activity is situated in the course
It is part of a sequence of activities linking earthquakes and damage.
Goals
Content/concepts goals for this activity
Students will link earthquake magnitude and acceleration and then link acceleration and intensity.
Higher order thinking skills goals for this activity
Other skills goals for this activity
Calculations and use of formulas
Description of the activity/assignment
Earthquake magnitude is commonly used to represent the size of an earthquake. However, most people want to understand how much impact or damage earthquakes do. These two concepts are linked by shaking. Earthquake magnitude can be measured in a variety of ways, most commonly moment magnitude or Richter magnitude. Shaking is measured in units of acceleration, (often a percentage of g). Damage or intensity can be measured by the modified Mercalli intensity (MMI) scale.
In this activity, students will model earthquakes of various magnitudes to determine the amount of shaking that these quakes will cause. They will then convert the shaking to modified Mercalli intensity and generate an isoseismal map for a M8 and M6 earthquake.
Uses geophysics to solve problems in other fields
Addresses student misconceptions
In this activity, students will model earthquakes of various magnitudes to determine the amount of shaking that these quakes will cause. They will then convert the shaking to modified Mercalli intensity and generate an isoseismal map for a M8 and M6 earthquake.
Uses geophysics to solve problems in other fields
Addresses student misconceptions
Determining whether students have met the goals
I grade what they submit!
More information about assessment tools and techniques.Teaching materials and tips
Other Materials
Supporting references/URLs
Donovan, N.C., (1973). A statistical evaluation of strong motion data including the Feb. 9,1971, San Fernando earthquake. Proc., 5WCEE, Rome, Italy, 1: 1252-1261.
Trifunac, M. D., and A. G. Brady (1975). On the correlation of seismic intensity scales with the peaks of recorded ground motion, Bull. Seism. Soc. Am. 65, 139-162
Wald, D. J., T. Heaton, H. Kanamori, P. Maechling, and V. Quitoriano (1999a). Research and Development of TriNet "Shake" Maps, Earthquake Spectra, 15.
Wald, D.J., V. Quitoriano, T.H. Heaton, and H. Kanamori (1999b). Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthq. Spectra 15, 557-564.
Trifunac, M. D., and A. G. Brady (1975). On the correlation of seismic intensity scales with the peaks of recorded ground motion, Bull. Seism. Soc. Am. 65, 139-162
Wald, D. J., T. Heaton, H. Kanamori, P. Maechling, and V. Quitoriano (1999a). Research and Development of TriNet "Shake" Maps, Earthquake Spectra, 15.
Wald, D.J., V. Quitoriano, T.H. Heaton, and H. Kanamori (1999b). Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthq. Spectra 15, 557-564.