Teaching Activities
Earth education activities from across all of the sites within the Teach the Earth portal.
Grade Level
Resource Type: Activities
Subject Show all
Geoscience > Geology > Geophysics > Seismology
92 matchesProject Show all
- Cutting Edge 38 matches
- Earth Exploration Toolbook 1 match
- EarthScope ANGLE 13 matches
- GETSI 10 matches
- Integrate 3 matches
- Keyah Math 2 matches
- NAGT 3 matches
- Project EDDIE 1 match
- Starting Point-Teaching Entry Level Geoscience 2 matches
- Teach the Earth 17 matches
- Teaching Computation with MATLAB 2 matches
Results 1 - 10 of 92 matches
Let's Look Inside the Earth part of Teaching Activities
David Zelenka
Students will analyze USGS seismology data in the classroom using spreadsheets and scatter plots to look for patterns and structure in the Earth's crust. Before analyzing data, students will learn about the ...
Resource Type: Activities: Activities:Classroom Activity
Subject: Geoscience:Geology:Geomorphology:Landforms/Processes:Volcanoes, Geoscience:Geology:Geophysics:Seismology, Geoscience:Geology:Tectonics, Environmental Science:Natural Hazards:Volcanism, Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Spectral Seismology Module part of Project EDDIE:Teaching Materials:Modules
This module was initially developed by Soule, D. S., M. Weirathmuller, G. Kroeger, and R. Darner Gougis. 20 March 2017. EDDIE: Spectral Seismology. EDDIE Module 10, Version 1. https://d32ogoqmya1dw8.cloudfront.net/files/enviro_data/activities/spectral_seismology_module-student_.v2.pdf. Module development was supported by NSF DEB 1245707 .
This module that is based on a conceptual presentation of waveforms and filters. "Spectral Seismology" will engage students using seismic and acoustic signals available through Incorporated Research ...
Online Readiness: Online Adaptable
Resource Type: Activities: Activities
Subject: Environmental Science:Natural Hazards:Earthquakes, Geoscience:Geology:Geophysics:Seismology
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Unit 2: Kilauea Hawai'i - Monday Morning Meeting at the USGS Hawai'i Volcano Observatory part of Monitoring Volcanoes and Communicating Risks
Kaatje van der Hoeven Kraft, Whatcom Community College and Rachel Teasdale, California State University-Chico
How do volcanologists at the Hawaiian Volcano Observatory monitor volcanoes? In a jigsaw format, students first work in teams to learn one of the four volcano monitoring data sets (GPS, Tilt, Seismic and InSAR) and ...
Resource Type: Activities: Course Module, Activities
Subject: Geoscience:Geology:Geophysics:Geodesy, Seismology
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
TOTLE (Teachers on the Leading Edge), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), EarthScope ANGLE, and ShakeAlert projects
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
Online Readiness: Designed for In-Person
Resource Type: Activities: Activities:Lab Activity, Outreach Activity, Classroom Activity
Subject: Geoscience:Geology:Geophysics:Seismology, Environmental Science:Natural Hazards:Mass Wasting, Earthquakes, Geoscience, Environmental Science:Natural Hazards, Engineering
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Jeffrey Barker (Binghamton University) & Michael Hubenthal (IRIS)
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.
Online Readiness: Online Ready
Resource Type: Activities: Activities:Lab Activity, Classroom Activity
Subject: Geoscience:Geology:Geophysics:Seismology, Environmental Science:Natural Hazards:Earthquakes, Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
IRIS (Incorporated Research Institutions for Seismology) and ShakeAlert
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Online Readiness: Designed for In-Person
Resource Type: Activities: Activities:Classroom Activity, Lab Activity, Outreach Activity
Subject: Geoscience:Geology:Geophysics:Seismology, Environmental Science:Natural Hazards:Earthquakes, Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
IRIS (Incorporated Research Institutions for Seismology)
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Online Readiness: Designed for In-Person
Resource Type: Activities: Activities:Lab Activity, Classroom Activity, Outreach Activity
Subject: Geoscience:Geology:Geophysics:Seismology, Environmental Science:Natural Hazards:Earthquakes, Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Unit 6: Applying GPS strain and earthquake hazard analyses to different regions part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu)
Phil Resor, Wesleyan University (presor@wesleyan.edu)
Students select their own set of three stations in an area of interest to them, conduct a strain analysis of the area between the stations, and tie the findings to regional tectonics and societal impacts in a 5–7 ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Structural Geology:Structural Visualizations, Stress/Strain/Strain Analysis, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geodesy, Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity, Geophysics and Structural Geology, Environmental Science:Natural Hazards:Earthquakes, Physics:General Physics:Vector Algebra, Geoscience:Geology:Environmental Geology, Tectonics, Geomorphology:Landscape Evolution, Geography:Geospatial, Physical
Activity Review: Passed Peer Review
Learn more about this review process.
Unit 5: 2014 South Napa Earthquake and GPS strain part of GPS, Strain, and Earthquakes
Phil Resor, Wesleyan University
The 2014 South Napa earthquake was the first large earthquake (Mag 6) to occur within the Plate Boundary Observatory GPS network (now Network of the Americas- NOTA) since installation. It provides an excellent ...
Resource Type: Activities: Activities, Course Module
Subject: Geoscience:Geology:Structural Geology:Folds/Faults/Ductile Shear Zones, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geodesy, Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Regional Structural/Tectonic Activity, Environmental Science:Natural Hazards:Earthquakes, Geoscience:Geology:Environmental Geology, Tectonics, Structural Geology:Geophysics and Structural Geology, Geography:Geospatial, Physical
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.
Unit 1: Earthquake! part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu)
Phil Resor, Wesleyan University (presor@wesleyan.edu)
In this opening unit, students develop the societal context for understanding earthquake hazards using as a case study the 2011 Tohoku, Japan, earthquake. It starts with a short homework "scavenger hunt" ...
Online Readiness: Online Adaptable
Resource Type: Activities: Course Module, Activities:Classroom Activity:Short Activity:Think-Pair-Share, Activities
Subject: Geoscience:Geology:Structural Geology:Stress/Strain/Strain Analysis, Regional Structural/Tectonic Activity, Geophysics and Structural Geology, Geoscience:Geology:Geophysics:Seismology, Geodynamics, Geography:Geospatial, Human/Cultural, Geoscience:Geology:Geophysics:Geodesy, Geoscience:Geology:Tectonics, Environmental Geology, Environmental Science:Natural Hazards:Earthquakes, Coastal Hazards:Tsunami, Environmental Science:Policy:Environmental Economics, Environmental Science:Energy:Energy Infrastructure, Nuclear Energy, Geoscience:Oceanography:Physical , Marine Geology and Geophysics, Geography:Physical, Geoscience:Oceanography:Marine Hazards
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Learn more about this review process.