Teaching about Hazards: Activities

These activity descriptions have been submitted by faculty from a range of disciplines. They may be adopted as is or modified to fit your course.


Help

Results 1 - 20 of 477 matches

Unit 1: Slip-sliding away: case study landslides in Italy and Peru
How have mass-wasting events affected communities, and what lessons have we learned from these natural disasters that might help us mitigate future hazards? In this unit, students answer these questions by being ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Human Wave: Modeling P and S Waves
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 2: Global Sea-Level Response to Temperature Changes: Temperature and Altimetry Data
What is the contribution of seawater thermal expansion to recent sea-level rise? In this unit, students create time-series graphs of global averaged sea surface temperature anomaly (SSTA) data spanning 1880–2017 ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Earthquake Machine
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Do We Know Where an Earthquake Originated?
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Engaging With Earthquake Hazard and Risk
This introductory activity engages learners in the study of earthquake hazards and the risk these hazards pose to humans in the communities in which we live. Learners will compare three maps of Anchorage, AK, depicting spatial information related to seismic hazards to generate questions about the factors that influence shaking intensity and damage to the built environment during earthquakes.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Earthquake Hazard Maps & Liquefaction: Alaska emphasis
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Fault Models for Teaching About Plate Tectonics
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Seismic Slinky: Modeling P and S waves
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Volcano Monitoring with GPS: Westdahl Volcano Alaska
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Alaska GPS Analysis of Plate Tectonics and Earthquakes
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Exploring Tectonic Motions with GPS
Using a map showing the horizontal velocities of GPS stations in the Plate Boundary Observatory and other GPS networks in Alaska and Western United States, students are able to describe the motions in different regions by interpreting the vectors resulting from long-term high-precision Global Positioning System (GPS) data. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Plate Tectonics: GPS Data, Boundary Zones, and Earthquake Hazards
Students work with high precision GPS data to explore how motion near a plate boundary is distributed over a larger region than the boundary line on the map. This allows them to investigate how earthquake hazard ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

World Map of Plate Boundaries
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Building Shaking —Variations of the BOSS Model
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 3: Understanding landslide factors
How do slope characteristics and magnitude of forces dictate whether or not a slope will fail? Can environmental and built characteristics change the magnitude of these forces? In this unit, students qualitatively ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Base Isolation for Earthquake Resistance
This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 1: Climate Change and Sea Level: Who Are the Stakeholders?
How are rising sea levels already influencing different regions? This unit offers case study examples for a coastal developing country (Bangladesh), a major coastal urban area (southern California), and an island ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Unit 2: Earthquakes, GPS, and Plate Movement
GPS data can measure bedrock motion in response to deformation of the ground near plate boundaries because of plate tectonics. In this module, students will learn how to read GPS data to interpret how the bedrock ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Converging Tectonic Plates Demonstration
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.