Teaching Activities
Earth education activities from across all of the sites within the Teach the Earth portal.
Grade Level
Resource Type: Activities Show all
Activities > Lab Activity
115 matchesSubject Show all
Geoscience > Geology > Tectonics
115 matchesProject Show all
- Cutting Edge 77 matches
- Earth Educators Rendezvous 2 matches
- EarthScope ANGLE 6 matches
- GEODE 2 matches
- Integrate 4 matches
- Integrating Research and Education 1 match
- IODP School of Rock 2020 1 match
- MARGINS Data in the Classroom 7 matches
- NAGT 1 match
- Pedagogy in Action 3 matches
- Quantitative Skills 5 matches
- Starting Point-Teaching Entry Level Geoscience 1 match
- Teach the Earth 2 matches
- Teaching with Augmented and Virtual Reality 1 match
- TIDeS 2 matches
Results 1 - 10 of 115 matches
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.
Resource Type: Activities: Activities, Lab Activity, Classroom Activity
Subject: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.
Resource Type: Activities: Activities, Lab Activity, Classroom Activity
Subject: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.
Resource Type: Activities: Activities, Classroom Activity, Outreach Activity, Lab Activity
Subject: Geography:Geospatial, Geoscience:Geology:Tectonics, Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Seafloor Spreading: Bathymetry, Anomalies, and Sediments part of Introductory Courses:Activities
Eileen Herrstrom, University of Illinois at Urbana-Champaign
This activity takes place in a laboratory setting and requires ~1.5-2 hours to complete. Students study the bathymetry of the South Atlantic, use magnetic reversals to interpret marine magnetic anomalies, and ...
Online Readiness: Online Adaptable
Resource Type: Activities: Activities:Lab Activity, Activities
Subject: Geoscience:Geology:Tectonics
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Topographic differencing: Earthquake along the Wasatch fault part of Teaching Activities
Chelsea Scott, Arizona State University at the Tempe Campus
After a big earthquake happens people ask, 'Where did the earthquake occur? How big was it? What type of fault was activated?' We designed an undergraduate laboratory exercise in which students learn how ...
Online Readiness: Online Ready
Resource Type: Activities: Activities:Lab Activity
Subject: Geoscience:Geology:Structural Geology:Regional Structural/Tectonic Activity, Geoscience:Geology:Geophysics:Geodesy, Geoscience:Geology:Geomorphology:Tectonic Geomorphology, Geoscience:Geology:Tectonics, Geomorphology:GIS/Mapping/Field Techniques, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Resource Type: Activities: Activities:Classroom Activity, Activities, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards, Geoscience:Geology:Tectonics, Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Converging Tectonic Plates Demonstration part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Resource Type: Activities: Activities:Classroom Activity, Activities, Outreach Activity, Lab Activity
Subject: Geoscience:Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Geography:Geospatial, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Exploring Tectonic Motions with GPS part of EarthScope ANGLE:Educational Materials:Activities
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change
Resource Type: Activities: Activities:Classroom Activity, Lab Activity
Subject: Geoscience:Geology:Geophysics:Geodesy, Environmental Science:Natural Hazards, Geoscience:Geology:Tectonics, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
World Map of Plate Boundaries part of EarthScope ANGLE:Educational Materials:Activities
Bonnie Magura (Portland Public Schools) and Chris Hedeen (Oregon City High School)
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.
Resource Type: Activities: Activities:Lab Activity, Classroom Activity
Subject: Geoscience:Geology:Tectonics, Geoscience, Environmental Science:Natural Hazards:Earthquakes, Volcanism
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
Modified from an activity by Larry Braile (Purdue University) by TOTLE (Teachers on the Leading Edge) Project and further improved by ShakeAlert.
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Online Readiness: Designed for In-Person
Resource Type: Activities: Activities:Outreach Activity, Classroom Activity, Lab Activity
Subject: Environmental Science:Natural Hazards:Earthquakes, Geoscience, Geology:Tectonics
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.