Integrate > Teaching for Sustainability > Strategies and Teaching Themes > Expert Ways of Thinking About Earth > Teach Geoscientific Thinking > Spatial Thinking

Spatial Thinking

Data that are distributed throughout 3-dimensional space are at the core of geoscience. Geologists, atmospheric scientists, and oceanographers all routinely explore and analyze data shown on maps. In addition, geoscientists easily combine evidence from a wide range scales—extracting information about the uplift of mountain ranges from the textures seen in a thin section for example, or integrating data from individual ocean buoys to determine currents and patterns across the entire Pacific Ocean.

This is a spatial skill... Many times, students are required to understand spatial visual information contained within abstract visualizations. For some people, understanding spatial representations can be a barrier to becoming a successful geoscientist. This barrier can be overcome through good instruction and practice.

This concept map (Manduca and Kastens, 2012) illustrates the domain of spatial thinking in the geosciences. Of primary interest here are the nodes of spatial skills, which discusses the habits of mind utilized by geoscientists to think over a broad range of spatial scales, and pedagogical approaches, which describes strategies for and impediments to teaching spatial skills. You can download text to accompany the concept map (Acrobat (PDF) 94kB Aug4 13).

Common challenges and misconceptions

  • Students often don't perceive maps as consisting of data, but instead think of them as pictures (Swenson and Kastens, 2011 )
  • Students may not have a strong understanding of horizontal and vertical, so struggle to describe the orientation of objects with respect to those (Liben and Titus, 2012 )
  • Spatial skills vary widely throughout the population and are rarely taught explicitly, so undergraduates often struggle with tasks that involve spatial analysis

Activities that address spatial thinking

Module 4: Understanding Sea-Level Change
Sean Cornell, Shippensburg University of Pennsylvania

Calculating the radius of the Earth
Basil Tikoff, University of Wisconsin-Madison

Unit 7: Heat Flow in Permafrost
Kirsten Menking, Vassar College

Unit 8: Thermohaline Circulation
David Bice, Pennsylvania State University-Main Campus

Browse the complete set of spatial thinking activities »

Learning outcomes and assessment for spatial thinking

Learning outcomes for spatial thinking benefit from specificity. For example, you may want students to be able to "read a topographic map," but this phrase may be completely opaque to a beginning student. Instead, Learning outcomes that addresses this habit of mind might be something like:

  • Students will choose an appropriate orientation to draw a cross-section from a map (a geologic map, or sea-surface temperature, or earthquake distribution, for example).
    • Assessment: Ask students to analyze existing published maps for their cross-section locations. As a group, describe the typical characteristics of these cross-section lines. Then give students multiple opportunities to practice selecting the location using increasingly complex maps where they must choose the orientation of a cross-section that will highlight the important features. Ask them to sketch the key features of the cross-sections.
  • Students will be able to recognize and describe patterns in map-based data such as earthquakes, sea-surface temperatures, and natural resource distribution
    • Assessment: Give students several maps of the same area with similar data sets. Work with them to analyze and compare the data, introducing ways to describe the data patterns (asymmetric, tightly clustered, etc.). Give the students a new map and ask them to do the same thing on their own.

Resources for teaching about spatial thinking

Connections to big ideas, essential principles, and fundamental concepts about spatial thinking in the geoscience literacies

  • Earth Science Big Idea 3. Earth is a complex system of interacting rock, water, air, and life.
    • Fundamental concept 3.4. Earth's systems interact over a wide range of temporal and spatial scales. These scales range from microscopic to global in size...
  • Climate Literacy Essential Principle 4. Climate varies over space and time through both natural and man-made processes.
    • Fundamental concept D. Scientific observations indicate that global climate has changed in the past, is changing now, and will change in the future. ...
  • Atmospheric Science Essential Principle 4. Earth's atmosphere changes over time and space, giving rise to weather and climate.
    • Fundamental concept 4.2. ...Earth's history has been marked by gradual variations global climate caused by long-term cyclic variations in Earth's orbit and axial tilt, and modulated by changes over geologic time in the sizes and distributions of the continents....

Selected references