InTeGrate Teaching Materials
InTeGrate materials engage students in understanding the earth system as it intertwines with key societal issues. They challenge students to address interdisciplinary problems, engage in geoscientific habits of mind, work with authentic geoscience data and develop system thinking. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Changing Biosphere Sustainability Topics: Biodiversity, Ecosystems
Grade Level: College Lower (13-14):College Introductory, High School (9-12)
View these Materials »
This module will give students a series of experiences exploring relationships among changes in the geosphere, hydrosphere, atmosphere, and biosphere. By studying a series of historical and current examples of the interconnections between organisms and their environments, students will be able to discuss the dynamic and evolving nature of ecosystems, explain the relationship between diversity and stability, and analyze the concept of ecosystem health in a changing world. The overarching goal is to have students synthesize this information to develop a working knowledge of how scientists view humans as actors in natural systems. Our understanding of the long-term consequences of the ways in which we engineer and manipulate our environment is informed by our scientific study of Earth systems.
Critical Zone Science Sustainability Topics: Ecosystems, Cycles & Systems
Grade Level: College Lower (13-14), College Upper (15-16)
View these Materials »
This course introduces and examines the Critical Zone (CZ), Earth's permeable layer that extends from the top of vegetation to the bottom of the fresh groundwater zone. It is a constantly evolving boundary layer where rock, soil, water, air, and living organisms interact to regulate the landscape and natural habitats, and determine the availability of life-sustaining resources, including our food production and water quality. CZ science is a highly interdisciplinary and international pursuit that depends upon effective and informed trans-disciplinary science. This course focuses on the large quantity of interdisciplinary data available from the existing National Science Foundation (NSF)-funded CZ Observatories (CZO) and utilizes readings, discussions, presentations, and cutting-edge learning activities.
Learn more about using these materials in specific contexts:
Dive Deep and Find Individual Sustainability Activities for your Classroom
A great way to get started with InTeGrate materials is to find a single activity that you can work into an existing course. This link will allow you to explore both specific activities within the InTeGrate modules above as well as activities from the community collection. This broader collection draws from multiple projects to provide sustainability related activities contributed by educators across the country.
Find individual InTeGrate teaching activities now »
Strategies and Teaching Themes
Strategy: Infuse Sustainability
Teaching with sustainability topics can increase student engagement by establishing relevance, bridging course content to current topics in the news, and connecting course material to other disciplines. Explore:
- Incorporation strategies
- Key topics (Energy, food, water, etc)
Strategy: Incorporate Expert Ways of Thinking about Earth
A sustainable approach requires sophisticated ways of thinking about the Earth system. Geoscience can lend expertise about how to approach these complex issues. Explore:
- Systems thinking
- Geoscientific thinking
Strategy: Connect to the World We Live In
Help your students make connections between what they learn in the classroom and the real world, get involved in the community, and prepare students for the workforce with hands-on experience. Explore:
- Service learning
- Teaching in the field
- Using the local environment
- Using local data
- Real world examples
Strategy: Build Interdisciplinary Connections
Complex socio-scientific issues require interdisciplinary approaches that give students practice integrating their scientific knowledge with societal constraints. Build connections with faculty that offer additional perspectives and expertise to strengthen your teaching. Explore:
- Connections between faculty
- Geoscience & engineering
- Understanding perspectives
Strategy: Connect Justice to Sustainability
Issues of sustainability do not affect everyone on the planet in the same way. Give your students an ethical perspective on Earth and society. Explore:
- Environmental Justice
- Risk & Resilience
- GeoEthics