InTeGrate Teaching Materials
InTeGrate materials engage students in understanding the earth system as it intertwines with key societal issues. They challenge students to address interdisciplinary problems, engage in geoscientific habits of mind, work with authentic geoscience data and develop system thinking. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Imaging Active Tectonics with InSAR and Lidar
from GETSI Sustainability Topics: Risk & Resilience, Natural Hazards, Technology
Grade Level: College Upper (15-16)
View these Materials »
In this module, students use lidar and InSAR data to understand the earthquake cycle, from individual earthquakes to landscape-forming timescales. This is motivated by consideration of earthquake hazards, specifically the vulnerability of the infrastructural lifelines upon which society depends. Five units are provided, including lecture materials, discussions, paper exercises, group activities that can be deployed either as gallery walks or computer exercises, an exercise for modeling InSAR data using an online tool, and a culminating assignment. These materials are intended for inclusion in upper-level undergraduate classes in structural geology, tectonics or geophysics. Show more about Online Teaching suggestions HideOnline teaching: This module is online-ready. Some elements are best done synchronously. See unit pages for details.
Major Storms and Community Resilience Sustainability Topics: Civil Society & Governance, Human Health & Well-being, Risk & Resilience, Natural Hazards
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
Extreme storms have major impacts on the communities that lie in their path. Many climate models predict increased frequency of heavy rains and icing events, freak storms, and severe weather within the continental United States as a result of ongoing climate changes. In many locales, risk factors for such economically damaging events are no longer accurately predicted by historical trend analyses. In addition, such variables as time of year, tidal conditions, and temperature can exacerbate the severity of a storm's impact. A community's ability to respond to a major storm, and to exhibit resilience afterwards, depends on its capabilities in risk assessment, management, and preparedness. Because of the rapid pace of changes within the global climate system, preparedness for future risks now also depends on understanding that old paradigms about risk may no longer apply. New risk models must take into account complex and incompletely identified geosystem feedbacks. Community resilience, therefore, increasingly depends on adapting to an uncertain level of risk from weather extremes.
Natural Hazards and Risks: Hurricanes Sustainability Topics: Risk & Resilience, Natural Hazards
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Making the difficult decision to evacuate before a hurricane makes landfall can save lives and property. This two week module explores how hurricanes connect the ocean-atmosphere-terrestrial systems and society. Students evaluate how hurricane hazards and risks have changed with coastal development. Students use data to track historic hurricanes and compare the impacts from different hurricanes. The module culminates in a role-playing activity in which students identify and represent stakeholders facing hypothetical hurricane evacuation in their town.
Surface Process Hazards
from GETSI Sustainability Topics: Risk & Resilience, Natural Hazards
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Worldwide mass wasting causes hundreds if not thousands of deaths per year and billions of dollars in damages. Many of these losses would be preventable if societies prioritized landslide mitigation. In this 2-3 week module, students use a variety of geodetic and other data to analyze the natural and human characteristics of landscapes that contribute to mass wasting hazards. Most of the geodetic data sets are high resolution topography from Lidar and radar, but some InSAR data are also included. Students consider the environmental and societal impacts of mass wasting and landslides as well as the physical factors behind mass movements. Materials for student reading and preparation exercises, in-class discussions, lab exercises, small group activities, gallery walks, and a final project are provided, as well as teaching tips and suggestions for modifications for a variety of class formats. Case study sites include Peru, Italy, and a variety of North American sites from Alaska to Utah to New York. Show more about Online Teaching suggestions HideOnline teaching: Units 1 and 5 are online-ready. Units 2-4 are online-adaptable (it will take a bit more work to convert). See unit pages for details and suggestions. Webinar about teaching this module: Addressing Landslide Hazards in Introductory Undergraduate Courses For a majors-level module on landslide hazards, please see Planning for Failure: Landslide Analysis for a Safer Society
Learn more about using these materials in specific contexts:
Dive Deep and Find Individual Sustainability Activities for your Classroom
A great way to get started with InTeGrate materials is to find a single activity that you can work into an existing course. This link will allow you to explore both specific activities within the InTeGrate modules above as well as activities from the community collection. This broader collection draws from multiple projects to provide sustainability related activities contributed by educators across the country.
Find individual InTeGrate teaching activities now »
Strategies and Teaching Themes
Strategy: Infuse Sustainability
Teaching with sustainability topics can increase student engagement by establishing relevance, bridging course content to current topics in the news, and connecting course material to other disciplines. Explore:
- Incorporation strategies
- Key topics (Energy, food, water, etc)
Strategy: Incorporate Expert Ways of Thinking about Earth
A sustainable approach requires sophisticated ways of thinking about the Earth system. Geoscience can lend expertise about how to approach these complex issues. Explore:
- Systems thinking
- Geoscientific thinking
Strategy: Connect to the World We Live In
Help your students make connections between what they learn in the classroom and the real world, get involved in the community, and prepare students for the workforce with hands-on experience. Explore:
- Service learning
- Teaching in the field
- Using the local environment
- Using local data
- Real world examples
Strategy: Build Interdisciplinary Connections
Complex socio-scientific issues require interdisciplinary approaches that give students practice integrating their scientific knowledge with societal constraints. Build connections with faculty that offer additional perspectives and expertise to strengthen your teaching. Explore:
- Connections between faculty
- Geoscience & engineering
- Understanding perspectives
Strategy: Connect Justice to Sustainability
Issues of sustainability do not affect everyone on the planet in the same way. Give your students an ethical perspective on Earth and society. Explore:
- Environmental Justice
- Risk & Resilience
- GeoEthics