InTeGrate Teaching Materials
InTeGrate materials engage students in understanding the earth system as it intertwines with key societal issues. They challenge students to address interdisciplinary problems, engage in geoscientific habits of mind, work with authentic geoscience data and develop system thinking. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Analyzing High Resolution Topography with TLS and SfM
from GETSI Sustainability Topics: Technology, Natural Hazards
Grade Level: College Upper (15-16)
View these Materials »
Part of GETSI Field Collection: Geodetic imaging technologies have emerged as critical tools for a range of earth science research applications from hazard assessment to change detection to stratigraphic sequence analysis. In this module students learn to conduct terrestrial laser scanner (TLS) and/or Structure from Motion (SfM) surveys to address real field research questions of importance to society. Both geodetic methods generate high resolution topographic data and have widespread research applications in geodesy, geomorphology, structural geology, and more. The module can be implemented in four- to five-day field course or as several weeks of a semester course. Prepared data sets are available for courses unable to collect data directly. Instructors can request support for equipment loans and some types of technical assistance from UNAVCO, which runs NSF's Geodetic Facility. Show more about Online Teaching suggestions HideOnline teaching: Elements of this module are online-adaptable. Prepared Data Sets and Remote Field Teaching provides data sets that can be used in lieu of student field data collection and an example of how GETSI field modules were used in a remote field course. Webinar about teaching this module: Integrating GPS, SfM, and TLS into Geoscience Field Courses
GPS, Strain, and Earthquakes
from GETSI Sustainability Topics: Natural Hazards
Grade Level: College Upper (15-16)
View these Materials »
Understanding how the Earth's crust deforms is crucial in a variety of geoscience disciplines, including structural geology, tectonics, and hazards assessment (earthquake, volcano, landslide). With the installation of numerous high precision Global Positioning System (GPS) stations, our ability to measure this deformation (strain) has increased dramatically, but GPS data are still only rarely included in undergraduate courses, even for geoscience majors. In this module students analyze GPS velocity data from triangles of adjacent GPS stations to determine the local strain. Students learn about strain, strain ellipses, GPS, and how to tie these to regional geology and ongoing societal hazards. A case study from the 2014 South Napa earthquake helps students make connections between interseismic strain and earthquake displacements. Show more about Online Teaching suggestions HideOnline teaching: Unit 1, Units 3-6 are online-ready. Unit 2 is not appropriate for online but the module can be done without it. See unit pages for details. Webinar about teaching this module: Addressing Earthquake Hazards with LiDAR, GPS, and InSAR in Upper-level Undergraduate Courses For introductory-level treatment of GPS and plate motions, please see Measuring the Earth with GPS - Unit 2
Imaging Active Tectonics with InSAR and Lidar
from GETSI Sustainability Topics: Risk & Resilience, Natural Hazards, Technology
Grade Level: College Upper (15-16)
View these Materials »
In this module, students use lidar and InSAR data to understand the earthquake cycle, from individual earthquakes to landscape-forming timescales. This is motivated by consideration of earthquake hazards, specifically the vulnerability of the infrastructural lifelines upon which society depends. Five units are provided, including lecture materials, discussions, paper exercises, group activities that can be deployed either as gallery walks or computer exercises, an exercise for modeling InSAR data using an online tool, and a culminating assignment. These materials are intended for inclusion in upper-level undergraduate classes in structural geology, tectonics or geophysics. Show more about Online Teaching suggestions HideOnline teaching: This module is online-ready. Some elements are best done synchronously. See unit pages for details.
Measuring Water Resources
from GETSI Sustainability Topics: Natural Resources, Natural Hazards, Water & Watersheds
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Measuring water resources such as groundwater and snowpack is challenging, but the advent of satellite gravity measurements and hydrologic GPS applications can augment traditional methods. This module gives students the unique opportunity to learn these newer methods alongside more traditional ones of groundwater wells and SNOTEL stations. They determine the pros/cons, uncertainty, and spatial scales of different methods. Droughts in the High Plains Aquifer and California are used as case studies. In the summative assessment, students pull together what they have learned and write a report with recommendations for policy makers. Show more about Online Teaching suggestions HideOnline teaching: Unit 1 is online-adaptable. The rest of the module is online-ready. Some elements are best done synchronously. See unit pages for details. Webinar about teaching this module: Addressing Water Resources and Sustainability in Upper-level Undergraduate Courses For introductory-level treatment of water resources, please see Eyes on the Hydrosphere: Tracking Water Resources and Measuring the Earth with GPS - Unit 4
Learn more about using these materials in specific contexts:
Dive Deep and Find Individual Sustainability Activities for your Classroom
A great way to get started with InTeGrate materials is to find a single activity that you can work into an existing course. This link will allow you to explore both specific activities within the InTeGrate modules above as well as activities from the community collection. This broader collection draws from multiple projects to provide sustainability related activities contributed by educators across the country.
Find individual InTeGrate teaching activities now »
Strategies and Teaching Themes
Strategy: Infuse Sustainability
Teaching with sustainability topics can increase student engagement by establishing relevance, bridging course content to current topics in the news, and connecting course material to other disciplines. Explore:
- Incorporation strategies
- Key topics (Energy, food, water, etc)
Strategy: Incorporate Expert Ways of Thinking about Earth
A sustainable approach requires sophisticated ways of thinking about the Earth system. Geoscience can lend expertise about how to approach these complex issues. Explore:
- Systems thinking
- Geoscientific thinking
Strategy: Connect to the World We Live In
Help your students make connections between what they learn in the classroom and the real world, get involved in the community, and prepare students for the workforce with hands-on experience. Explore:
- Service learning
- Teaching in the field
- Using the local environment
- Using local data
- Real world examples
Strategy: Build Interdisciplinary Connections
Complex socio-scientific issues require interdisciplinary approaches that give students practice integrating their scientific knowledge with societal constraints. Build connections with faculty that offer additional perspectives and expertise to strengthen your teaching. Explore:
- Connections between faculty
- Geoscience & engineering
- Understanding perspectives
Strategy: Connect Justice to Sustainability
Issues of sustainability do not affect everyone on the planet in the same way. Give your students an ethical perspective on Earth and society. Explore:
- Environmental Justice
- Risk & Resilience
- GeoEthics