How are minerals and rocks taught in introductory college geology labs? An evaluation of levels of utility and inquiry, with suggestions for improvement aligned with primary literature.

Wednesday 11:15-11:45am PT / 12:15-12:45pm MT / 1:15-1:45pm CT / 2:15-2:45pm ET Online

Authors

Meryssa Piper, University of South Carolina-Columbia
Jessica Frankle, University of South Carolina-Columbia
Sophia Sanders, University of South Carolina-Columbia
Blake Stubbins, University of South Carolina-Columbia
Lance Tully, University of South Carolina-Columbia
Katherine Ryker, University of South Carolina-Columbia
Rock and mineral laboratory activities are an integral component of introductory geoscience courses, providing critical opportunities for students to apply what they learn in lecture. Despite the evidence that inquiry-based instruction increases science literacy skills, course engagement, and self-efficacy, introductory geoscience laboratory activities are commonly taught in a confirmation-based style, in which the students are expected to memorize facts rather than produce findings. Prior works indicated that of all STEM fields, geology laboratories, particularly rock and mineral activities, tend to be the least inquiry-based. However, these analyses rely on activities published in printed laboratory manuals. To test whether the same is true of instructor-generated activities, we measured the levels of inquiry and utility within introductory rock and mineral laboratory activities published in the Science Education Resource Center teaching collection. A detailed analysis of how these activities are structured in the context of inquiry (n = 36) and utility (n = 20) are provided. Inquiry analyses employed an adaptation of the modified Buck et al. (2008) rubric presented in Ryker and McConnell (2017). Utility analyses were performed using a newly developed nine-item rubric loosely modeled from McConnell et al. (2017). None of the examined assessments attained open or authentic inquiry. Laboratory activity inquiry ranged from confirmation (22%) to guided (17%), with the majority identified as structured (61%). The utility scores ranged from 12 - 24 on a scale ranging from 9 - 27 (i.e., most difficult to easiest implementation). The results provide no significant relationship between high levels of inquiry and low levels of utility (p-value > 0.1), contradictory to prevailing notions that increasing inquiry levels comes at the expense of utility. The rubrics utilized in and developed for this study could provide researchers with beneficial tools for further exploration of laboratory activities on other topics, or in different disciplines.

This content is only available to individuals who have registered for the 2021 Earth Educators' Rendezvous

If you're a registered attendee you'll need to login to access this content