The Role of Virtual Reality in Science Education: A Literature Review

Wednesday 12:35 PT / 1:35 MT / 2:35 CT / 3:35 ET Online
Oral Session Part of Oral Session I


Kevin Hurler, University of South Carolina-Columbia
Katherine Ryker, University of South Carolina-Columbia
Earth is a complex web of interconnected systems and feedback loops, including both the natural and anthropogenic spheres that govern our planet. Relating these systems, a process called earth systems thinking, helps students better understand the relationships between the different spheres of Earth, resulting in a more thorough knowledge of geoscience (Soltis, McNeal, Forbes, & Lally, 2019). However, the task of understanding these relationships is frequently challenging for undergraduate students, such as those enrolled in introductory geology courses (Soltis et al., 2019). Emerging technologies, such as virtual reality, show promise in aiding students' abilities to sift through complex data spaces quickly and efficiently (Salzman, Dede, Loftin, & Chen, 1999).

Virtual reality (VR) appears frequently and is well studied as a tool for education in subjects such as physics, biology, and medicine (Dede, Salzman, & Loftin, 1996; Haluck & Krummel, 2000; Shim et al., 2003), but is still in the early stages of implementation in the geosciences. In order to understand best practices with VR in college science settings, we have conducted a systematic literature review of peer-reviewed articles published between 1999-2019 on VR in science classrooms. Each article was reviewed using St. John and McNeal's Strength of Evidence Pyramid (2017). Preliminary results indicate that the majority of articles on VR can be found at the lower levels of practitioner wisdom/anecdotal evidence and single case studies. Effective uses of VR include desktop virtual experiences with emphasis on instructor scaffolding as students acclimate to this new technology, as well as special attention to cognitive overload (Mayer, Mautone, & Prothero, 2002). Further, a degree of adaptative feedback and interactivity with the experience has the ability to increase student knowledge and engagement (Mead et al., 2019).

Presentation Media

Kevin Hurler - VR in Science Education (PowerPoint 2007 (.pptx) 13.6MB Jul12 20)

Session Connection Info

This event has already occurred.