Teaching Activities
These teaching activities have a strong spatial thinking component. Search the collection to find activities suitable for your classes.
Resource Type: Activities Show all
Activities > Lab Activity
814 matchesSubject: Geoscience Show all
- Economic Geology 6 matches
- Environmental Geology 19 matches
- Geochemistry 76 matches
- Geomorphology 149 matches
- Geophysics 156 matches
- Historical Geology 48 matches
- Igneous and Metamorphic Petrology 103 matches
- Mineralogy 124 matches
- Sedimentary Geology 87 matches
- Structural Geology 101 matches
- Tectonics 110 matches
Geoscience > Geology
180 matches General/OtherResults 1 - 20 of 814 matches
Converging Tectonic Plates Demonstration
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Learn more about this review process.
Getting started with Structure from Motion (SfM) photogrammetry
Beth Pratt-Sitaula, EarthScope
Structure from Motion (SfM) photogrammetry method uses overlapping images to create a 3D point cloud of an object or landscape. It can be applied to everything from fault scarps to landslides to topography. This ...
Learn more about this review process.
Indiana River Meanders Mapping Exercise
Emily Zawacki, Arizona State University at the Tempe Campus
In Indiana, major rivers and their tributaries cross much of the state. These rivers can produce significant hazards related to flooding and erosion, which threaten nearby residents and infrastructure. Rivers are ...
Learn more about this review process.
Karst Hydrogeology: A virtual field introduction using Google Earth and GIS
Rachel Bosch, Northern Kentucky University
Students will have the opportunity to select and virtually explore the hydrogeology and geomorphology of a karst landscape using Google Earth, lidar data-sourced DEM(s) and geologic maps, and GIS software (QGIS) ...
See the activity page for details.
Karst Hydrogeology and Geomorphology: A virtual field experience using Google Earth, GIS, and TAK
Rachel Bosch, Northern Kentucky University
Students will have the opportunity to select and virtually explore the hydrogeology and geomorphology of a karst landscape using Google Earth (or perhaps Google Mars or Google Moon if they so choose), lidar ...
See the activity page for details.
3D View from a Drone | Make a 3D Model From Your Photos
Shelley E Olds, EarthScope Consortium
Using cameras mounted to drones, students will design and construct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform in a process called structure from motion (SfM). This activity has both a hands-on component (collecting data with the drone) and a computer-based component (creating the 3-dimensional model).___________________Drones can take photos that can be analyzed later. By planning ahead to have enough overlap between photos, you take those individual photos and make a 3-dimensional image!In this activity, you guide the students to identify an outcrop or landform to study later or over repeat visits. They go through the process to plan, conduct, and analyze an investigation to help answer their science question.The Challenge: Design and conduct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform, then analyze the image and interpret the resulting 3-d image.For instance they might wish to study a hillside that has been changed from a previous forest fire. How is the hillside starting to shift after rainstorms or snows? Monitoring an area over many months can lead to discoveries about how the erosional processes happen and also provide homeowners, park rangers, planners, and others valuable information to take action to stabilize areas to prevent landslides.
Learn more about this review process.
Using Carbon Isotopes in Astrobiology: Origin of Life and beyond
Phoebe Cohen, Williams College
Carbon isotopes are used in many different ways by scientists to reconstruct Earth's past. For example, we can use carbon isotopes to determine when life first evolved on Earth, and to learn more about what ...
Learn more about this review process.
Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.
Learn more about this review process.
Working with Point Clouds in CloudCompare and Classifying with CANUPO
Sharon Bywater-Reyes, University of Northern Colorado
This exercise will walk you through 1) basic operations and use in CloudCompare, and 2) use of an Open-Source plugin in CloudCompare called CANUPO (http://nicolas.brodu.net/en/recherche/canupo/) that allows for ...
Learn more about this review process.
OGGM-Edu Glaciology Lab 1: What Makes a Glacier?
Lizz Ultee, Middlebury College
This is a three-part class or lab activity that challenges students to define what a glacier is, how it differs from other parts of the cryosphere (such as sea ice), and what kinds of glaciers there are in the ...
Learn more about this review process.
Feldspar Minerals and Triangle Diagrams
Eileen Herrstrom, University of Illinois at Urbana-Champaign
This activity takes place in a laboratory setting and requires ~1.5-2 hours to complete. Students learn how to read a triangle or ternary diagram. They determine physical properties of feldspars and interpret two ...
Learn more about this review process.
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.
Learn more about this review process.
Measuring Ground Motion with GPS: How GPS Works
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.
Learn more about this review process.
Igneous Rocks and Triangle Diagrams
Eileen Herrstrom, University of Illinois at Urbana-Champaign
This activity takes place in a laboratory setting and requires ~1.5-2 hours to complete. Students observe igneous rock compositions and plot them on triangle diagrams, normalize rock compositions using a ...
Learn more about this review process.
Igneous Rocks Inquiry Lab (In Person)
Jennifer Cholnoky, Skidmore College; Mary Abercrombie, Florida Gulf Coast University
Average inquiry level: Guided inquiry This is an in-person inquiry lab for igneous rocks, but it could be converted to an online lab through use of igneous rock photos available online (see links provided in the ...
Learn more about this review process.
Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.
Learn more about this review process.
Measuring the Inclination and Declination of the Earth's magnetic field with a smartphone
Avradip Ghosh, University of Houston-University Park
The poles of the Earth's magnetic field are not precisely aligned with the geographic north and south poles and, in fact, vary continuously. This activity introduces to students the Earth's magnetic ...
Learn more about this review process.
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Learn more about this review process.
Geology of Yosemite Valley
Nicolas Barth, University of California-Riverside
This is a four-part module designed to be flexible in duration and student grade-level. (1) Geology of Yosemite Valley Virtual Field Trip. A 43-stop web-based Google Earth tour with embedded views, hyperlinked ...
See the activity page for details.
Virtual Geologic Mapping Exercise at Lough Fee
Steve Whitmeyer, James Madison University
The Virtual Geologic Mapping Exercise is designed to simulate an introductory field mapping exercise. Students load a KML file in Google Earth that includes real outcrop data in the form of dots and orientation ...
See the activity page for details.