Search the Portal
This page allows you to search across all of the sites within the Teach the Earth portal. Check our guide to Finding Earth Education Resources at SERC
Information Type
Theme: Teach the Earth Show all
Teach the Earth > Enhancing your Teaching > Quantitative Skills
15 matchesLocation Show all
- Educational Materials 15 matches
EarthScope ANGLE
Results 1 - 10 of 15 matches
Volcano Monitoring with GPS: Westdahl Volcano Alaska part of EarthScope ANGLE:Educational Materials:Activities
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...
Learn more about this review process.
Tsunami Vertical Evacuation Structures (TVES) part of EarthScope ANGLE:Educational Materials:Activities
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.
Learn more about this review process.
Building Shaking —Variations of the BOSS Model part of EarthScope ANGLE:Educational Materials:Activities
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.
Learn more about this review process.
Alaska GPS Analysis of Plate Tectonics and Earthquakes part of EarthScope ANGLE:Educational Materials:Activities
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.
Learn more about this review process.
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Learn more about this review process.
How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.
Learn more about this review process.
Base Isolation for Earthquake Resistance part of EarthScope ANGLE:Educational Materials:Activities
This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.
Learn more about this review process.
Frequency of Large Earthquakes part of EarthScope ANGLE:Educational Materials:Activities
Using the IRIS Earthquake Browser tool, students gather data to support a claim about how many large (Mw 8+) earthquakes will happen globally each year. This activity provides scaffolded experience downloading data and manipulating data within a spreadsheet.
Learn more about this review process.
Investigating Factors That Affect Tsunami Inundation part of EarthScope ANGLE:Educational Materials:Activities
Learners modify elements of a tsunami wave tank to investigate the affect that near-coast bathymetry (submarine topography) and coastal landforms have on how far a tsunami can travel inland. Damaging tsunami are most commonly produced by subduction zone earthquakes, such as those that occur in Alaska.
Pasta Quake: Exploring Earthquake Magnitude part of EarthScope ANGLE:Educational Materials:Activities
This short activity provides an intuitive introduction to earthquake magnitude using an everyday item--spaghetti. Learners are introduced to the earthquake magnitude scale by breaking different amounts of uncooked noodles. Visual scale of the pasta emphasizes the relative differences between magnitudes with each whole step in magnitude. For older students, the demonstration helps students understand why seismologists use the nonlinear logarithmic scale to best graph the huge range of quantities.