Exemplary Teaching Activities

Beginning in 2011, On the Cutting Edge began a process to review the extensive collection of activities submitted by workshop participants and members of the geoscience community. With the transition of the On the Cutting Edge program into NAGT the review process is now being used to broadly review online teaching activities relevant to NAGT's community of Earth educators. Through this review processes activities are scored on 5 elements: scientific veracity; alignment of goals, activity, and assessment; pedagogical effectiveness; robustness; and completeness of the description. The activities that score very highly in these areas become part of the Cutting Edge Exemplary Collection and are featured below.

You may also be interested in the full collection of teaching activities.



Current Search Limits:
Online Ready

Results 1 - 10 of 16 matches

Topographic differencing: Earthquake along the Wasatch fault part of Teaching Activities
Chelsea Scott, Arizona State University at the Tempe Campus
After a big earthquake happens people ask, 'Where did the earthquake occur? How big was it? What type of fault was activated?' We designed an undergraduate laboratory exercise in which students learn how ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Mid-Atlantic Appalachian Orogen Traverse – Field Trip 1 part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Steve Whitmeyer, James Madison University
The Mid-Atlantic Appalachian Orogen Traverse is a series of 4 virtual field trips that cross the Blue Ridge and Valley and Ridge geologic provinces in northwestern Virginia and northeastern West Virginia. This ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Jeffrey Barker (Binghamton University) & Michael Hubenthal (IRIS)
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 4: Impacts of Environmental Change on Organisms: Horses part of Changing Biosphere
Camille Holmgren, SUNY Buffalo State University
In this unit, students will gain a deep-time perspective on how life evolves on a dynamic planet. They will use the Equidae (horse family) as a case study to examine the relationship among climate, biomes, and ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 2: Water Footprints part of Water, Agriculture, Sustainability
Robert Turner, University of Washington-Bothell Campus
Unit 2 opens a window into water accounting and reveals intensive water use that few people think about. How much water goes into common commodities? Have you considered how much water it takes to support our ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 3: Getting started with GPS data part of GPS, Strain, and Earthquakes
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu) Phil Resor, Wesleyan University (presor@wesleyan.edu)
This unit provides essential background information on GPS (global positioning system) and reference frames. Students learn how to access GPS location and velocity data from the Network of the Americas (NOTA). They ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Unit 2.1: Hydrologic Impact of Land-Use Change part of An Ecosystem Services Approach to Water Resources
John Ritter, Wittenberg University; Meghann Jarchow, University of South Dakota; Ed Barbanell, University of Utah
In this activity, students model the impact of land-cover changes on stormwater runoff using the EPA's National Stormwater Calculator (Calculator). The students are introduced to the Calculator through a ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 3: Geodetic survey of a fault scarp part of Analyzing High Resolution Topography with TLS and SfM
Bruce Douglas (Indiana University) Nicholas Pinter (University of California Davis) Nathan Niemi (University of Michigan) J. Ramon Arrowsmith (Arizona State University) Kate Shervais (UNAVCO) Chris Crosby (EarthScope)
In this unit, students will design a survey (TLS and/or SfM) of a fault scarp. After conducting the survey in the field, students will analyze the data to identify the number and magnitude of possible fault ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Unit 2: Identifying faulting styles, rates and histories through analysis of geomorphic characteristics (Lidar) part of Imaging Active Tectonics
Bruce Douglas, Indiana University-Bloomington; Gareth Funning, University of California-Riverside
Can active faults be identified remotely, based upon their appearance in the landscape? How can the geomorphic features associated with active faults be used to classify and quantify fault movement? In this unit, ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
GETSI Developed This material was developed and reviewed through the GETSI curricular materials development process.
Learn more about this review process.

Role of Sedimentation in Rifting part of MARGINS Data in the Classroom:Mini Lesson Collection 2014
Sue Cashman, Humboldt State University; Rebecca Dorsey, University of Oregon; Scott Bennett, U.S. Geological Survey; Jack Loveless, Smith College; Lisa Lamb, University of St. Thomas (MN); Andrew Goodliffe, The University of Alabama
A module in which students use field and geophysical measurements and observations of Gulf of California basins to calculate isostasy and its controls.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.