Examples


Results 1 - 10 of 119 matches

What Does the Mean Mean? Describing Eruptions at Riverside Geyser, Yellowstone National Park part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum/Geology of National Parks module. Students study measures of central tendency in a bimodal dataset of eruption intervals.

Deciviews from Look Rock, Great Smoky Mountains National Park: How Hazy is it? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze index and standard visual range from concentrations of particulate matter.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Porosity and Permeability of Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Bubbles in Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Carbon Sequestration in Campus Trees part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum module. Students use allometric relationships to calculate tree mass from trunk diameter in a stand of trees in the Pacific Northwest.

CLEAN Selected This activity has been selected for inclusion in the CLEAN collection.
Learn more about this review process.

Comparing Stream Discharge in Two Watersheds in Glacier National Park part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students study how discharge per unit area varies with elevation in the high country of Glacier National Park from USGS hydrograph data from Swiftcurrent Creek and its tributary Grinnell Creek..

Dunes, Boxcars, and Ball Jars: Mining the Great Lakes Shores part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students estimate the volume of sand in Hoosier Slide, a large dome-shaped dune quarried away in the 1920s from what is now Indiana Dunes National Lakeshore. They also estimate the number of boxcars to carry the sand, and the number of Ball jars produced from it.

Yellowstone! A National Park on a Hot Spot part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students use foundational math to study the velocity of the North American Plate over the hot spot, the volume of eruptive materials from it, and the recurrence interval of the cataclysmic eruptions.