InTeGrate Modules and Courses >Future of Food > Student Materials > Module 7: Soils and a Systems Approach to Soil Quality > Module 7.1: Cropping Systems and Soil Quality > Intercrops and Cover Crops
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Future of Food Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.

Intercrops and Cover Crops

Intercrops are two or more crops that are planted together in a field at the same time or to be planted close in time and overlap for some or all of their life cycle. Intercrops may provide a range of benefits including: i. improving soil fertility, ii. increasing crop diversity and iii. reducing pest pressure. The mixtures also often produce higher yield and crop quality. There are multiple types of intercrops that vary in their spatial arrangement.

Strip intercrops are wide strips with multiple rows of one crop, that are alternated on the field with strips of one or more different crop(s). Strip intercrops are typically planted on the field contour with crops of different life cycles that protect soil from erosion throughout the year. For instance, strips of corn may be alternated with strips of perennial forage grasses that can reduce soil erosion across the field when the corn isn't growing. Or, as in the photo below, winter wheat provided live plant coverage on portions of the field in spring, prior to corn and soybean were planted. In mid-summer, corn and soybean provide live coverage after wheat is harvested; and in fall, winter wheat will be growing on some strips after corn and soybean are harvested. Having strips of different crop species can also reduce the spread of insect pests and crop pathogens compared to cultivating one crop on the entire field.

Row intercrops alternate rows of different crop species, usually every other row or every two rows.

In this system, hairy vetch is planted to provide soil protection, suppress weeds, and add nitrogen to the soil.

Credit: Heather Karsten

Mixture intercrops tend to be combined randomly when planted; such as grass and legume forage mixtures. Intercrops of different crop species (ex. native tuber mixtures) or different varieties of a crop species (ex. rice) are sometimes planted to reduce pathogen and insect pest infestations. Crop rotation and intercropping increase agrobiodiversity across an agricultural landscape, providing multiple potential agroecosystem benefits, such as i. reducing the risk of crop loss to pests and climatic stresses (ex. frosts, floods, and drought), ii. providing habitat for beneficial organisms such as pollinators and pest predators, and iii. enhancing the diversity of nutritional crops for farmers and markets. Further, integrating crops from the grass family tends to promote soil structure, while legumes enhance soil nitrogen, and integrating perennial crops protects the soil from erosion and builds soil organic matter and soil biological activity because perennials allocate a high proportion of their growth to storage organs. For instance, the photos below illustrate how both intercropping and crop rotation enhance agrobiodiversity in the high Andes of Peru.

Cover Crop: A cover crop is planted after a crop that is harvested and is terminated before the subsequent crop is planted. Cover crops tend to be annual crops that they can quickly establish after a harvested crop to protect the soil from erosion and provide other benefits including i. to add organic matter to the soil; ii. to scavenge nutrients and prevent nutrients from leaching out of the topsoil (also called a catch crop); iii. to support soil organisms in the root zone, iv. to suppress weeds, and v. to provide habitat for aboveground beneficial organisms, such as insects that predate on crop pests or weed seeds. Leguminous cover crops also add nitrogen to the soil when they are terminated and returned to the soil and are therefore often referred to as green manure crops. Cover crops are also sometimes referred to as "catch crops" because they can take up and retain nitrogen and other nutrients that might otherwise leach out of the rooting zone and be lost to deeper soil profiles, and potentially to groundwater.

Cover Crop Intercrops

Because cover crop species have different plant traits that provide different cropping system benefits, often two or more species of cover crops are planted together as a cover crop intercrop or cover crop mixture. For instance, small grains that scavenge nitrogen well and have fibrous roots that bind soil particles and promote soil structure are often mixed with tap-rooted legumes that fix nitrogen. Some cover crop mixtures combine plant species that establish quickly in the late summer or early fall but don't typically survive the winter, such as oats or deep-rooted radish species. Non-winter hardy species are sometimes combined with winter-hardy species such as hairy vetch, cereal rye or annual ryegrass that survive the winter and provide cover in early spring.

Readings

Download the book Building Soils for Better Crops. Edition 3. Sustainable Agriculture Network, USDA. Beltsville, MD or read it online, Building Soils for Better Crops. Edition 3.

For this module, you will be assigned to read multiple sections. So, we recommended that you download the book. Then, read more about the benefits of cover crops in Chapter 10: Cover Crops and Chapter 11: Crop Rotations.


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »