InTeGrate Modules and Courses >Coastal Processes, Hazards and Society > Student Materials > Drivers of Sea Level Change on Geologic Time Scales > Extrinsic Controls and Sea Level > Sea Level Change During the Last 5 Million Years
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Coastal Processes, Hazards and Society Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.

Sea Level Change During the Last 5 Million Years

Exploring the Pliocene-Pleistocene Interval

In order to answer this question, let's explore sea level curves for the past five million years (our best and most complete interval of well-calibrated geologic time) in high resolution to see what temporal patterns might exist. Again we have already explored high-frequency periodic (daily/monthly/seasonal) sea level changes, but what other scales are evident in the sea level change record?


This figure, produced by Dr. James Hansen at Columbia University's Earth Institute, shows sea levels based on proxy datasets for the last 5 million years, spanning the Pliocene-Pleistocene interval up to about 11,000 years ago at the end of the last glacial maximum (LGM).

Proxy datasets use various observations (typically geochemical measurements of radioisotopes derived from ice cores, sediment/rock cores, coral growth rings, tree rings, etc.) to establish global changes in atmospheric gas concentrations and associated temperature changes and hence changes in sea level positions. In this sea level dataset (albedo proxy; see this Climate Data Information webpage for more info), albedo is the proxy that is used to link climate change to lower and lower sea levels. The legend embedded in Figure 4.24 indicates that climate change (i.e., cooling), changes the location of deep ocean water formation. This results in changes to ocean circulation that may be integral in sea level change through this 5 million year (Mya) interval.

Any one of you should be able to observe the patterns and trends demonstrated in the dataset and arrive at a general consensus. That is:

In the transition out of the Pliocene and into the Pleistocene around 2 Mya, there is a pronounced change in behavior of the curve. The interval to the right of the 2 Mya (Pleistocene Epoch) is increasingly punctuated by more extreme volatility and oscillation of sea levels, especially in the terminal Pleistocene from about 600 kya to the LGM or Last Glacial Maximum.

You might ask, then, what changed? What happened to cause sea levels to not only change, but also to change so rapidly and with such pronounced shifts of up to 100 meters or more? In this case (the Hansen Curve), you will see that sea levels throughout the Neogene (Pliocene, Pleistocene, and Holocene) have been dynamic and volatile, but with a general long-term trend toward lower sea levels from sea level positions higher than modern about 3 million years ago. In contrast to the Pliocene, sea levels dropped to levels at least 100 meters below modern sea level on at least 4 occasions during the last 600,000 years. These sea level lowstands concur with glacial maxima (LGM - Last Glacial Maximum), the last of which demarcates the boundary between the Pleistocene and Holocene Epoch.


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »