Using effective education strategies to guide curriculum changes in the Environmental Sciences program at the University of Texas at El Paso: lessons learned
Poster Session Part of
Friday
Authors
Lixin Jin, University of Texas at El Paso
Vanessa L Lougheed, University of Texas at El Paso
Elizabeth Walsh, University of Texas at El Paso
Diane Doser, University of Texas at El Paso
Guadalupe Corral, University of Texas at El Paso
We revised the curriculum for the Environmental Sciences undergraduate program at the University of Texas at El Paso (UTEP), with support of grants from the Department of Education MSEIP and NSF-IUSE programs, to increase recruitment, retention and graduation rates. During these curriculum changes, critical gaps were filled in the degree sequence, and more importantly, we implemented educational strategies to better prepare these underrepresented students for future STEM careers.
Specifically, an innovative and interdisciplinary stratified mentoring approach was used to support and retain Hispanic students throughout their college years. The team that would guide these students included peers through a learning community at the freshman level, seniors and graduate students at the sophomore level, and then multiple faculty from UTEP, and professionals from federal, state and local agencies, industry, private sectors, and academia at junior and senior levels. Thus the team was vertically stratified, with individuals with different levels of expertise, and horizontally stratified, with individuals from multiple disciplines, having different career paths and working in different sectors. In addition, students were immersed into experiential learning through team projects, individual research, summer internships, and service learning.
Various methods were used to assess how the program activities impacted student participants, including pre- and post-surveys, and a revised version of the Undergraduate Student Self-Assessment (URSSA). Collectively, the student enrollment in the program has increased and retention rate has doubled. The evaluations showed improvements in students' confidence in specific technical skills, and professional and soft skills, students' awareness of and interests in solving environmental issues that are locally, regionally and globally important, and students' self-identity as an environmental scientist and attitudes towards STEM careers. We will discuss motivation, design, implementation, struggles and lessons learned from these curricular changes, and also adaptation of this curriculum by other minority serving institutions.
Specifically, an innovative and interdisciplinary stratified mentoring approach was used to support and retain Hispanic students throughout their college years. The team that would guide these students included peers through a learning community at the freshman level, seniors and graduate students at the sophomore level, and then multiple faculty from UTEP, and professionals from federal, state and local agencies, industry, private sectors, and academia at junior and senior levels. Thus the team was vertically stratified, with individuals with different levels of expertise, and horizontally stratified, with individuals from multiple disciplines, having different career paths and working in different sectors. In addition, students were immersed into experiential learning through team projects, individual research, summer internships, and service learning.
Various methods were used to assess how the program activities impacted student participants, including pre- and post-surveys, and a revised version of the Undergraduate Student Self-Assessment (URSSA). Collectively, the student enrollment in the program has increased and retention rate has doubled. The evaluations showed improvements in students' confidence in specific technical skills, and professional and soft skills, students' awareness of and interests in solving environmental issues that are locally, regionally and globally important, and students' self-identity as an environmental scientist and attitudes towards STEM careers. We will discuss motivation, design, implementation, struggles and lessons learned from these curricular changes, and also adaptation of this curriculum by other minority serving institutions.