Heat Capacity of Minerals: A Hands-On Introduction to Chemical Thermodynamics
David G. Bailey
,
Hamilton College
This activity was selected for the On the Cutting Edge Exemplary Teaching Collection
Resources in this top level collection a) must have scored Exemplary or Very Good in all five review categories, and must also rate as "Exemplary" in at least three of the five categories. The five categories included in the peer review process are
- Scientific Accuracy
- Alignment of Learning Goals, Activities, and Assessments
- Pedagogic Effectiveness
- Robustness (usability and dependability of all components)
- Completeness of the ActivitySheet web page
For more information about the peer review process itself, please see https://serc.carleton.edu/teachearth/activity_review.html.
This activity was peer reviewed prior to publication in the Teaching Mineralogy Workbook.
This teaching activity was originally published in: Brady, J., Mogk, D. W., and Perkins, D., (editors), 1997, "Teaching Mineralogy," a workbook published by the Mineralogical Society of America, 406 pp. All teaching activities in this volume received two external peer reviews from mineralogy faculty focused on content and pedagogy, and a final review by the co-editors to comply with the publication standards of the Mineralogical Society of America.
- First Publication: May 9, 2008
- Reviewed: August 2, 2011 -- Reviewed by the On the Cutting Edge Activity Review Process
Summary
Minerals are inorganic chemical compounds with a wide range of physical and chemical properties. Geologists frequently measure and observe properties such as hardness, specific gravity, color, etc. Unfortunately, students usually view these properties simply as tools for identifying unknown mineral specimens. One of the objectives of this exercise is to make students aware of the fact that minerals have many additional properties that can be measured, and that all of the physical and chemical properties of minerals have important applications beyond that of simple mineral identification.
Share your modifications and improvements to this activity through the Community Contribution Tool »Context
Audience
This activity is designed for an undergraduate required course in mineralogy and is generally for sophomore or junior level students.
Skills and concepts that students must have mastered
- General chemistry (thermodynamics)
- Graphing
- Using a balance
How the activity is situated in the course
This activity is a stand-alone exercise, but is part of a larger volume of classroom and laboratory activities from "Teaching Mineralogy," a workbook published by the Mineralogical Society of America, Brady, J., Mogk, D. W., and Perkins, D., (editors), 1997,406 pp.
Goals
Content/concepts goals for this activity
This activity is designed to prepare students for upper level courses by:
- introducing them to important concepts (thermodynamics) and skills (data analysis and presentation)
- making connections between mineralogy and other disciplines and relate to life applications
- promoting collaborative student work.
Higher order thinking skills goals for this activity
Understanding thermodynamics and analyzing and presenting data
Other skills goals for this activity
Working in groups
Description of the activity/assignment
Minerals are inorganic chemical compounds with a wide range of physical and chemical properties. Geologists frequently measure and observe properties such as hardness, specific gravity, color, etc. Unfortunately, students usually view these properties simply as tools for identifying unknown mineral specimens. One of the objectives of this exercise is to make students aware of the fact that minerals have many additional properties that can be measured, and that all of the physical and chemical properties of minerals have important applications beyond that of simple mineral identification.
Please do not let the title of this exercise scare you away. Introducing students to thermodynamics is not the primary objective. Getting students to "do" science - to observe, record, and interpret experimental data - is the primary goal. Heat capacity just happens to be a good vehicle for this purpose.
Determining whether students have met the goals
Students have met the goals of this exercise if they have answered the thought questions completely and accurately thereby demonstrating that they are able to analyze and interpret the data they collect.
More information about assessment tools and techniques.Teaching materials and tips
Other Materials
Supporting references/URLs
Brady, J., Mogk, D. W., and Perkins, D., (editors), 1997, Teaching Mineralogy, a workbook published by the Mineralogical Society of America, 406 pp.
Mineralogical Society of America - Join today!