Classroom, Lab and Field Exercises in Geophysics
This collection of teaching materials allows for the sharing of ideas and activities within the community of geophysics teachers.
Do you have a favorite teaching activity you'd like to share? Add your teaching materials to the collection, using our submission tool.
Subject: Geophysics Show all
Geoscience > Geology > Geophysics > Geodesy
144 matchesResults 1 - 20 of 144 matches
Estimating GPS Positional Error part of Workshop 07: Activities
Bill Witte, University of Alaska Fairbanks
Very simply and directly determine the x, y, z accuracy of the various GPS receivers using a simple method that doesn't use a lot of quantitative statistics and yields a gut-level sense of the accuracy of ...
In-situ Density from Gravity by Nettleton part of Workshop 07: Activities
Scott White, University of South Carolina-Columbia
This activity develops students' understanding of gravity data corrections and density estimates by using a gravimeter to collect data and then interpret this data to find an estimate for the local bulk ...
Interseismic deformation: Crustal deformation between large earthquakes part of Workshop 07: Activities
SHIMON WDOWINSKI, Florida International University
This assignment is based on real geodetic data measured in central California across the San Andreas Fault. It will get the students acquainted with geodetic observations, basic data analysis methods, and ...
Estimating Valley Fill Thickness with a Gravity Survey part of Workshop 07: Activities
Bill Witte, University of Alaska Fairbanks
We will make a gravity traverse of the Goldstream valley to determine the thickness of the valley fill. The exercise will take ~ 4hrs, working in two teams all students will get to function in each of the survey ...
Converging Tectonic Plates Demonstration part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Learn more about this review process.
Getting started with Structure from Motion (SfM) photogrammetry part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Beth Pratt-Sitaula, EarthScope
Structure from Motion (SfM) photogrammetry method uses overlapping images to create a 3D point cloud of an object or landscape. It can be applied to everything from fault scarps to landslides to topography. This ...
Learn more about this review process.
Karst Hydrogeology: A virtual field introduction using Google Earth and GIS part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Rachel Bosch, Northern Kentucky University
Students will have the opportunity to select and virtually explore the hydrogeology and geomorphology of a karst landscape using Google Earth, lidar data-sourced DEM(s) and geologic maps, and GIS software (QGIS) ...
See the activity page for details.
3D View from a Drone | Make a 3D Model From Your Photos part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Using cameras mounted to drones, students will design and construct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform in a process called structure from motion (SfM). This activity has both a hands-on component (collecting data with the drone) and a computer-based component (creating the 3-dimensional model).___________________Drones can take photos that can be analyzed later. By planning ahead to have enough overlap between photos, you take those individual photos and make a 3-dimensional image!In this activity, you guide the students to identify an outcrop or landform to study later or over repeat visits. They go through the process to plan, conduct, and analyze an investigation to help answer their science question.The Challenge: Design and conduct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform, then analyze the image and interpret the resulting 3-d image.For instance they might wish to study a hillside that has been changed from a previous forest fire. How is the hillside starting to shift after rainstorms or snows? Monitoring an area over many months can lead to discoveries about how the erosional processes happen and also provide homeowners, park rangers, planners, and others valuable information to take action to stabilize areas to prevent landslides.
Learn more about this review process.
Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.
Learn more about this review process.
Working with Point Clouds in CloudCompare and Classifying with CANUPO part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Sharon Bywater-Reyes, University of Northern Colorado
This exercise will walk you through 1) basic operations and use in CloudCompare, and 2) use of an Open-Source plugin in CloudCompare called CANUPO (http://nicolas.brodu.net/en/recherche/canupo/) that allows for ...
Learn more about this review process.
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.
Learn more about this review process.
Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.
Learn more about this review process.
Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.
Learn more about this review process.
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Learn more about this review process.
Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.
Learn more about this review process.
Pinpointing Location with GPS Demonstration: How GPS Works (Part 2) part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Using string, bubble gum, and a model of a GPS station, demonstrate how GPS work to pinpoint a location on Earth.Precisely knowing a location on Earth is useful because our Earth's surface is constantly changing from earthquakes, volcanic eruptions, tectonic plate motion, landslides, and more. Thus, scientists can use positions determined with GPS to study all these Earth processes.
Learn more about this review process.
Introduction to Terrestrial Laser Scanning part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Sharon Bywater-Reyes, University of Northern Colorado; Beth Pratt-Sitaula, EarthScope
In this assignment, students analyze terrestrial laser scanner (TLS) data in a similar manner as done previously with structure from motion (SfM) data, earlier in the course. Students compare and contrast the SfM ...
Landslide Mapping and Analysis part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Alison Duvall, University of Washington-Seattle Campus
The purpose of this module is to familiarize students to empirical methods of mass movement hazard analysis, to provide them training in mapping and analyzing inventories of landslides from lidar datasets, and to ...
Structure from Motion for Analysis of River Characteristics part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Sharon Bywater-Reyes, University of Northern Colorado; Beth Pratt-Sitaula, EarthScope
In this assignment, students conduct a Structure from Motion (SfM) survey of the Sheep Draw field site along the Poudre River near Greely, CO. The end product is a point cloud used in additional assignments to ...
Science with Flubber: Glacial Isostasy part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Using two sets of flubber, one representing the Earth and one representing a glacier, demonstrate how the crust sinks and rebounds to the weight of a glacier, and how this motion can be measured using GPS.Flubber is a rubbery elastic substance, a non-Newtonian elasco-plastic fluid, that flows under gravity, but breaks when under high stress. Flubber is useful for demonstrating a wide range of Earth and glacier processes.