Teaching Activities

These teaching activities have been submitted via a number of projects including On the Cutting Edge and may be useful in teaching Environmental Geology.



Current Search Limits:

Results 31 - 40 of 238 matches

Tsunami Vertical Evacuation Structures (TVES)
Bonnie Magura (Portland Public Schools), Roger Groom (Mt Tabor Middle School), and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program)
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Investigating Factors That Affect Tsunami Inundation
Bonnie Magura (Portland Public Schools), Roger Groom (Mt Tabor Middle School), and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program)
Learners modify elements of a tsunami wave tank to investigate the affect that near-coast bathymetry (submarine topography) and coastal landforms have on how far a tsunami can travel inland. Damaging tsunami are most commonly produced by subduction zone earthquakes, such as those that occur in Alaska.

Be Smart, Be Prepared! Planning an Emergency Backpack
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?

Alaska Earthquake Hazard Inventory & Mitigation Planning
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

SeismicWaves Viewer & SeismicEruption Software
Roger Groom, Mt Tabor Middle School
This activity includes both the Seismic Waves Viewer and the Seismic Eruption software to help learners better understand earthquakes, volcanoes, and the structure of the Earth. Seismic Waves is a browser-based tool to visualize the propagation of seismic waves from historic earthquakes through Earth's interior and around its surface. By carefully examining these seismic wave fronts and their propagation, the Seismic Waves tool illustrates how earthquakes can provide evidence that allows us to infer Earth's interior structure. Seismic Eruption shows seismicity (earthquakes) and volcanic activity in space and time from 1960 to present. When the program is running, the user sees lights, which represent earthquakes, flashing on the screen in speeded-up time. The user can control the speed of the action. In addition, the program can show seismicity under Earth's surface in three-dimensional and cross-sectional views. Earthquakes can be selected by magnitude and volcanic eruptions can be selected by volcanic explosivity index. In this way, large earthquakes and large eruptions can be selected to emphasize how different types of plate boundaries are characterized by different magnitudes of earthquakes (e.g. no major or great earthquakes occur on spreading ocean ridges). This lesson plan was developed by , Portland Oregon. Students investigate how seismic waves travel through Earth's internal layers and bounce and bend at internal boundaries between mantle, outer core, and inner core.

Build a Better Wall
FEMA (Federal Emergency Management Administration) and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program). Improvements by ShakeAlert.
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Pasta Quake: Exploring Earthquake Magnitude
Paul Doherty (Exploratorium Teacher Institute) and Roger Groom (Mt Tabor Middle School) with improvements by ShakeAlert
This short activity provides an intuitive introduction to earthquake magnitude using an everyday item--spaghetti. Learners are introduced to the earthquake magnitude scale by breaking different amounts of uncooked noodles. Visual scale of the pasta emphasizes the relative differences between magnitudes with each whole step in magnitude. For older students, the demonstration helps students understand why seismologists use the nonlinear logarithmic scale to best graph the huge range of quantities.

Rocks are Elastic!! Seeing is Believing
IRIS (Incorporated Research Institutions for Seismology)
This activity helps learners see the elastic properties of rocks by actually bending marble. How rocks respond to stress is a fundamental concept, critical to forming explanatory models in the geosciences (e.g., elastic rebound theory). Whereas learners are likely to have lots of experience with rocks, few will have directly experienced them behaving elastically. As a result of this "missed experience", most learners conceptualize rocks as rigid solids; a concept which generally serves students well in everyday life but impedes learning about particular geologic concepts.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Sea Ice Predictive Model
Joceline Boucher, Maine Maritime Academy
This is a quick (~25 min) classroom activity designed to stimulate thinking about sea ice, climate change, and differences between Arctic and Antarctic conditions.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Arctic Climate Curriculum, Activity 2: Do you really want to visit the Arctic?
Karin Kirk, Freelance Science Writer and Geoscientist
This jigsaw activity is designed for students to become familiar with several datasets of Arctic weather data, collected in Eureka on Ellesmere Island. Students join a role-playing activity to read and interpret ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
CLEAN Selected This activity has been selected for inclusion in the CLEAN collection.
Learn more about this review process.