Teaching Activities

These teaching activities have been submitted via a number of projects including On the Cutting Edge and may be useful in teaching Environmental Geology.


Help

Results 1 - 10 of 801 matches

How Do We Know Where an Earthquake Originated?
Jeffrey Barker (Binghamton University) & Michael Hubenthal (IRIS)
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Earthquake Hazard Maps & Liquefaction: Alaska emphasis
TOTLE (Teachers on the Leading Edge), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), EarthScope ANGLE, and ShakeAlert projects
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Greenhouse Effect Lab
Krista Larsen, Carleton College
In this lab, students measure temperature changes inside soda bottles (one with CO2 added, the other with only air inside) as incandescent light is shined on them to model the Greenhouse Effect.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Earthquake Machine
IRIS (Incorporated Research Institutions for Seismology) and ShakeAlert
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Climate Change Mind Map
Woody Moses, Highline Community College

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Water Quality Module
This module was initially developed by Castendyk, D. and Gibson, C. 30 June 2015. Project EDDIE: Water Quality. Project EDDIE Module 6, Version 1. cemast.illinoisstate.edu/data-for-students/modules/water-quality.shtml. Module development was supported by NSF DEB 1245707.
Water quality is a critical concept for undergraduate students studying Earth Sciences, Biology, and Environmental Sciences. Many of these students will be asked to assess the impacts of a proposed anthropogenic ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Lesson 3: The Value of a Water Footprint (High School)
Kai Olson-Sawyer, GRACE Communications Foundation
Session 1 of this lesson begins with a quick activity to get students thinking about their direct and virtual water use. It introduces a few new ideas for virtual water use that may surprise students, including the ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Lake Modeling Module
This page was initially developed by Carey, C.C., S. Aditya, K. Subratie, and R. Figueiredo. 1 May 2016. Project EDDIE: Modeling Climate Change Effects on Lakes Using Distributed Computing. Project EDDIE Module 4, Version 1. Module development was supported by NSF DEB 1245707 and ACI 1234983. Note: An updated version of this module is available as part of the Macrosystems EDDIE project. Please visit the Climate Change Effects on Lake Temperatures module to view and download module files. We recommend using the updated Macrosystems EDDIE version of the module, as the Lake Modeling module materials have not been maintained with R code and software updates.
Lakes around the globe are experiencing the effects of climate change. In this module, students will learn how to use a lake model to explore the effects of altered weather on lakes, and then develop their own ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Seismic Slinky: Modeling P and S waves
IRIS (Incorporated Research Institutions for Seismology)
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Mock United Nations Climate Negotiations Exercise
Shangrila Wynn, The Evergreen State College
This is a version of the UN climate mock negotiations exercise developed by Shangrila Joshi Wynn.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.


Advertisement