Search the Portal
This page allows you to search across all of the sites within the Teach the Earth portal. Check our guide to Finding Earth Education Resources at SERC
Information Type
Subject Show all
- Geology 1 match
- Hydrology 2 matches
- Oceanography 5 matches
- Paleontology 1 match
- Soils 1 match
Geoscience
3 matches General/OtherTheme: Teach the Earth
Results 1 - 8 of 8 matches
Population & Community Ecology part of CUREnet:CURE Collection
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.
Learn more about this review process.
Analyzing datasets in ecology and evolution to teach the nature and process of science part of CUREnet:CURE Collection
This quarter-long project forms the basis of a third-year course for majors and nonmajors at the University of Washington, Bothell called Science Methods and Practice. Students use databases to identify novel research questions, and extract data to test their hypotheses. They frame the question with primary literature, address the questions with inferential statistics, and discuss the results with more primary literature. The product is a scientific paper; each step of the process is scaffolded and evaluated. Given time limitations, we avoid devoting time to data collection; instead, we sharpen students' ability to make sense of a large body of quantitative data, a situation they may rarely have encountered. We treat statistics with a strictly conceptual, pragmatic, and abbreviated approach; i.e., we ask students to know which basic test to choose to assess a linear relationship vs. a difference between two means. We stress the need for a normal distribution in order to use these tests, and how to interpret the results; we leave the rest for stats courses, and we do not teach the mathematics. This approach proves beneficial even to those who have already had a statistics course, because it is often the first time they make decisions about applying statistics to their own research questions. We incorporate peer review and collaborative work throughout the quarter. We form collaborative groups around the research questions they ask, enabling them to share primary literature they find, and preparing them well to review each other's writing. We encourage them to cite each other's work. They write formal peer reviews of each other's papers, and they submit their final paper with a letter-to-the-editor highlighting how their research has addressed previous feedback. A major advantage of this course is that an instructor can easily modify it to suit any area of expertise. Students have worked with data about how a snail's morphology changes in response to its environment (Price, 2012), how students understand genetic drift (Price et al. 2014), maximum body size in the fossil record (Payne et al. 2008), range shifts (Ettinger et al. 2011), and urban crop pollination (Waters and Clifford 2014).
Community Flood Risk Assessment from Rising/Surging Seas Project part of CUREnet:Institutes:Other Institutes (2019-2020):Examples
Globally 634 million people, 10% of the world's population, live in coastal areas less than 10 meters above sea level. According to 2010 census data, 123 million people, 39% of the United States population, live in coastal counties with an estimated increase to this number by 8% in the 2020 census. As natural disasters have been seen to increase in frequency and severity in the past five years coupled with expected sea rises from climate change it is important that anyone involved with the safety and resiliency planning of their organization/community have an understanding of how to scientifically assess risk from flooding in order to mitigate and recover from the effects. This project allows students the ability to develop skills to utilize computer modeling systems and to apply the data to real world communities in examining risk to structures as well as different groups in the community.
See the activity page for details.
Global Change Microbiology part of CUREnet:CURE Collection
The dramatic impacts of human activities on Earth have catapulted the development of new disciplines across the sciences, humanities, and more. Studying the basis, challenges and responses to the global changes our planet and the human society face has become urgent. In the Global Change Microbiology CURE, students develop semester-long research projects focused on microbial communities and their relationship with a local environmental problem. Students: 1) develop research questions and conduct both field and wet lab work to estimate environmental, cell count and DNA-based diversity metrics; 2) receive training in bioinformatics, data analysis and result presentation; and 3) discuss literature on the interplay between microbes and environmental issues (e.g., global warming, ocean acidification, deoxygenation of coastal waters), the impacts of global changes on microbe-host interactions (e.g., coral bleaching, spreading of infectious diseases) and microbial applications (e.g., bioremediation, waste management). We examine key players in the whole spectrum of microorganisms (from viruses to microscopic animals), with emphasis on often overlooked protists that influence biogeochemical cycles, ecological functioning and host wellbeing.
CREARE: Coral Response to Environment Authentic Research Experience part of CUREnet:CURE Collection
There is growing body of evidence to support that students who directly experience authentic scientific research are more likely to continue onto advanced degrees and careers in Science, Technology, Engineering and Mathematics (STEM). In an effort to introduce more students to the benefits of scientific research we have drawn on an ongoing research project aimed at understanding how Corals Respond to the Environment (CRE) to develop an interdisciplinary laboratory course based on Authentic Research Experiences (ARE). A small cohort of undergraduate students enrolled in a semester-long course, entitled CREARE, perform biochemical experiments in the laboratory, analyze environmental data by R statistical software and prepared a report modeled after a research manuscript to present their work. The impact of CREARE on student learning gains and attitudes towards science is being measured, as is the impact of CREARE on participants' career choices and retention in STEM. This multidisciplinary research program addresses the impact of climate change on the health of a critically endangered coral species, ultimately leading to a better stewardship of this invaluable resource. Furthermore, CREARE offers a unique experience for students, one that may serve as a model for the development of more research-based courses, leading to improved retention in our STEM departments.
Using Ocean Plastic Research to Increase Student Engagement and Persistence in Biology part of CUREnet:CURE Collection
The Improving Undergraduate STEM Education: Hispanic-Serving Institutions Program (HSI Program) aims to enhance undergraduate STEM education and build capacity at HSIs. Projects supported by the HSI Program will also generate new knowledge on how to achieve these aims. This project at National University will advance the aims of the HSI Program by adding research experiences to undergraduate biology courses. Through a collaboration with the Scripps Institution of Oceanography, this project incorporates course-based undergraduate research (CURE) biology courses for biology majors and for non-majors. The research topics focuses on plastic pollution in the ocean, particularly the microbial populations attached to floating plastic. The CURE is modular and can be adapted for undergraduate courses of different levels. In addition, a virtual adaptation was implemented during the Covid-19 epidemic lockdown phase. A version of the CURE designed for microbiology courses uses the established Tiny Earth methodology to isolate antibiotic producing bacteria from plastic debris.
Karst Study Using Geophysics at Bracken Bat Cave Preserve part of CUREnet:Institutes:Ad-Hoc CURE Institutes:Examples
South Central Texas depends on deep seated aquifers to maintain a water supply for over 5 million people. Much of this water supply is recharged through karst features in the Texas Hill Country. Understanding the features on a property helps determine the appropriate level of development, but geophysical methods have limitations on interpreting feature size. Students in this project built on previous work to examine the error of two common geophysical methods when detecting humanly accessible shallow karst features. They gained skills in site analysis using spatial software and high-resolution GPS collection, field work planning, data collection and analysis.
Non-Tuberculous Mycobacteria abundance and diversity in response to climate change part of CUREnet:CURE Collection
This CURE engages student in hypothesis-driven research to investigate how seasonal climate affects microbial diversity, particularly Non-Tuberculous Mycobacteria (NTM) communities found in environmental samples such as soil and water. The course focus on NTM diversity and physiology and its relationship with climate. Students are also introduced to climate change and how it may affect microbial diversity and abundance with implications to human health.