Search the Portal

This page allows you to search across all of the sites within the Teach the Earth portal. Check our guide to Finding Earth Education Resources at SERC


Current Search Limits:
CUREnet

Results 1 - 4 of 4 matches

Best Bets

Data, Simulations, Models part of Themes
Key Resources: Teaching with Data, Simulations, and Models from On the Cutting Edge Teaching with Data from Pedagogy in Action Teaching with data Simulations from Pedagogy in Action Teaching with Models from ...

GIS/Remote Sensing part of Themes
Key Resources: Teaching with GIS in the Geosciences from Starting Point: Teaching Introductory Geoscience. Teaching GIS and Remote Sensing from On the Cutting Edge. Teaching with GeoPads from Integrating Research ...

Biomass conversion into highly useful chemicals part of CUREnet:Institutes:Alabama State University:Examples
This is CURE based course that aims at bridging the gap between theoretical knowledge in chemistry and its practical applications at solving real-world problems. It gives students an opportunity to construct and synthesize their knowledge and skills by learning to apply theoretical knowledge to practice by the laboratory research. The purpose of this course is to acquaint students with the fundamental concepts of chemistry, synthetic methods and techniques. The emphasis will be on novel catalysts synthesis and evaluating their activity towards biomass conversion to liquid fuel and useful chemicals. Students will design synthesize, deduce identities of the biomass conversion products from chemical and spectral clues, and predict reaction products.

CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Karst Study Using Geophysics at Bracken Bat Cave Preserve​ part of CUREnet:Institutes:Ad-Hoc CURE Institutes:Examples
South Central Texas depends on deep seated aquifers to maintain a water supply for over 5 million people. Much of this water supply is recharged through karst features in the Texas Hill Country. Understanding the features on a property helps determine the appropriate level of development, but geophysical methods have limitations on interpreting feature size. Students in this project built on previous work to examine the error of two common geophysical methods when detecting humanly accessible shallow karst features. They gained skills in site analysis using spatial software and high-resolution GPS collection, field work planning, data collection and analysis.

Using NSF's NEON Data in an Undergraduate Ecology CURE on the Ecological Impacts of Global Climate Change part of CUREnet:CURE Collection
We live in a time where we can see a very real need for a basic understanding of ecological terminology, concepts, and methodologies to improve public policy and other ecological problem-solving decisions, especially in light of global climate change. Across the field, there is a major push to incorporate computational thinking and an understanding of human social systems throughout the science curriculum. In ecology and other STEMM fields, basic programming and coding skills have become essential and marketable, as has the ability to mine and analyze large data sets.In this semester-long CURE, students individually develop and answer their own ecological research question using a selection of publicly available datasets from the expansive NSF NEON data repository. Generally, at the beginning of the course the instructor selects several data products from a specific geographic region. After gaining familiarity with the NEON project through videos, a NEON data tutorial, and a case study, students also use these curated NEON data products to begin forming their independent research projects. Most students ultimately incorporate other data products either from NEON or other databases into their final research projects. Students use mostly R to download, wrangle, and analyze their data. The instructor assumes no prior knowledge of R or coding at the beginning of the course. Throughout the semester, students complete mini-assignments and tutorials which introduce them to the necessary coding skills to download, clean, analyze, and visualize their chosen data products. Additionally, students are provided with a wide range of free resources, including videos, tutorials, and the free online textbook Passion Driven Statistics to help them master the skills they need to complete their individual research projects. During weekly in-class one-on-one meetings with the instructor, students work to identify, collect, and analyze data that would address an existing hypothesis/ problem in the field of ecology and global climate change. Ultimately, students present their findings to the larger campus community during the annual undergraduate research day at our institution.

Community Flood Risk Assessment from Rising/Surging Seas Project part of CUREnet:Institutes:Other Institutes (2019-2020):Examples
Globally 634 million people, 10% of the world's population, live in coastal areas less than 10 meters above sea level. According to 2010 census data, 123 million people, 39% of the United States population, live in coastal counties with an estimated increase to this number by 8% in the 2020 census. As natural disasters have been seen to increase in frequency and severity in the past five years coupled with expected sea rises from climate change it is important that anyone involved with the safety and resiliency planning of their organization/community have an understanding of how to scientifically assess risk from flooding in order to mitigate and recover from the effects. This project allows students the ability to develop skills to utilize computer modeling systems and to apply the data to real world communities in examining risk to structures as well as different groups in the community.

CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.