Teaching Activities
Earth education activities from across all of the sites within the Teach the Earth portal.
Grade Level Show all
High School (9-12)
226 matchesOnline Readiness
Resource Type: Activities Show all
Activities > Lab Activity
226 matchesSubject
Project Show all
- CLEAN 17 matches
- Cutting Edge 48 matches
- EarthLabs 2 matches
- EarthLabs for Educators 13 matches
- EarthScope ANGLE 26 matches
- GET Spatial Learning 1 match
- Hawaiian Volcanoes 1 match
- Integrate 3 matches
- IODP School of Rock 2020 3 matches
- MARGINS Data in the Classroom 2 matches
- NAGT 21 matches
- Pedagogy in Action 28 matches
- Quantitative Skills 15 matches
- Starting Point-Teaching Entry Level Geoscience 1 match
- Teach the Earth 43 matches
- Teaching Computation with MATLAB 1 match
- Teaching with Augmented and Virtual Reality 1 match
Results 1 - 10 of 226 matches
Converging Tectonic Plates Demonstration part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Resource Type: Activities: Activities:Classroom Activity, Activities, Outreach Activity, Lab Activity
Subject: Geoscience:Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Geography:Geospatial, Environmental Science:Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Activity 8: Equilibrium Experiment part of Teaching Activities
Cameron Weiner, Middlebury College
Students explore the systems thinking concepts of equilibrium and nonequilibrium with a water pouring experiment. Students complete the activity at home or virtually with videos. Water is poured from a top ...
Resource Type: Activities: Activities:Lab Activity, Classroom Activity
Subject: Geoscience
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
3D View from a Drone | Make a 3D Model From Your Photos part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Using cameras mounted to drones, students will design and construct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform in a process called structure from motion (SfM). This activity has both a hands-on component (collecting data with the drone) and a computer-based component (creating the 3-dimensional model).___________________Drones can take photos that can be analyzed later. By planning ahead to have enough overlap between photos, you take those individual photos and make a 3-dimensional image!In this activity, you guide the students to identify an outcrop or landform to study later or over repeat visits. They go through the process to plan, conduct, and analyze an investigation to help answer their science question.The Challenge: Design and conduct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform, then analyze the image and interpret the resulting 3-d image.For instance they might wish to study a hillside that has been changed from a previous forest fire. How is the hillside starting to shift after rainstorms or snows? Monitoring an area over many months can lead to discoveries about how the erosional processes happen and also provide homeowners, park rangers, planners, and others valuable information to take action to stabilize areas to prevent landslides.
Resource Type: Activities: Activities, Lab Activity, Classroom Activity
Subject: Geoscience, Geology:Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.
Resource Type: Activities: Activities:Classroom Activity, Lab Activity, Activities
Subject: Geoscience:Geology:Geophysics:Geodesy, Seismology, Geoscience:Geology:Tectonics, Environmental Science:Natural Hazards:Earthquakes, Geoscience:Oceanography:Marine Hazards, Environmental Science:Natural Hazards:Coastal Hazards:Tsunami, Environmental Science:Natural Hazards
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
OGGM-Edu Glaciology Lab 1: What Makes a Glacier? part of Teaching Activities
Lizz Ultee, Middlebury College
This is a three-part class or lab activity that challenges students to define what a glacier is, how it differs from other parts of the cryosphere (such as sea ice), and what kinds of glaciers there are in the ...
Resource Type: Activities: Activities:Lab Activity, Classroom Activity
Subject: Geoscience:Geology:Geomorphology:Landforms/Processes:Glacial/Periglacial, Environmental Science:Global Change and Climate:Climate Change:Impacts of climate change, Geoscience:Atmospheric Science:Climate Change:Global change modeling, Impacts of climate change, Environmental Science:Global Change and Climate:Sea Level Change, Climate Change:Global change modeling
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.
Resource Type: Activities: Activities, Lab Activity, Classroom Activity
Subject: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.
Resource Type: Activities: Activities, Classroom Activity, Outreach Activity, Lab Activity
Subject: Geography:Geospatial, Geoscience:Geology:Tectonics, Geophysics:Geodesy
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.
Resource Type: Activities: Activities, Lab Activity, Classroom Activity
Subject: Geoscience, Geology:Tectonics, Geophysics:Geodesy, Environmental Science:Natural Hazards, Natural Hazards:Earthquakes
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Measuring the Inclination and Declination of the Earth's magnetic field with a smartphone part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Avradip Ghosh, University of Houston-University Park
The poles of the Earth's magnetic field are not precisely aligned with the geographic north and south poles and, in fact, vary continuously. This activity introduces to students the Earth's magnetic ...
Online Readiness: Online Ready
Resource Type: Activities: Activities:Virtual Field Trip, Classroom Activity, Field Activity, Project, Lab Activity
Subject: Geoscience:Geology:Geophysics:Magnetism/Paleomag
Activity Review: Peer Reviewed as Exemplary
Learn more about this review process.
Geology of Yosemite Valley part of Cutting Edge:Enhance Your Teaching:Teaching with Online Field Experiences:Activities
Nicolas Barth, University of California-Riverside
This is a four-part module designed to be flexible in duration and student grade-level. (1) Geology of Yosemite Valley Virtual Field Trip. A 43-stop web-based Google Earth tour with embedded views, hyperlinked ...
Online Readiness: Online Ready
Resource Type: Activities: Activities:Classroom Activity, Writing Assignment, Lab Activity, Project
Subject: Geoscience:Geology:Geomorphology:GIS/Mapping/Field Techniques, Geoscience:Geology:Structural Geology
Activity Review: Peer Reviewed as Exemplary
See the activity page for details.