This activity was selected for the On the Cutting Edge Reviewed Teaching Collection
This activity has received positive reviews in a peer review process involving five review categories. The five categories included in the process are
- Scientific Accuracy
- Alignment of Learning Goals, Activities, and Assessments
- Pedagogic Effectiveness
- Robustness (usability and dependability of all components)
- Completeness of the ActivitySheet web page
For more information about the peer review process itself, please see https://serc.carleton.edu/teachearth/activity_review.html.
Crystal Structures as Geobarometers
Kent Ratajeski
Published Jan. 4, 2005
Description
Wouldn't it be nice to know the depth of crystallization of this clinopyroxene?
Details
This exercise is based on the recent formulation of a geobarometer based on the crystal structure of clinopyroxene (Nimis, 1995; 1998; 1999). This method relates structural parameters (e.g., the volumes of the unit cell and the M1 polyhedron) to the pressure at which the mineral crystallizes within basic and ultrabasic magmas.
In this exercise, students are guided into the American Mineralogist Crystal Structure Database to retrieve and download published crystal structure data for viewing in either the CrystalMaker or XtalDraw visualization software packages. The students are instructed on how to examine the structures to determine pressure-sensitive crystallographic parameters and are asked a series of questions related to what they learn.
References
Nimis, P. (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology, 121, 115-125.
Nimis, P., and Ulmer, P. (1998) Clinopyroxene geobarometry of magmatic rocks. Part 1. An expanded structural geobarometer for anhydrous and hydrous basic and ultrabasic systems. Contributions to Mineralogy and Petrology, 133, 122-135.
Nimis, P. (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and Petrology, 135, 62-74.