InTeGrate Modules and Courses >Future of Food > Student Materials > Module 6: Crops > Module 6.1: Crop Life Cycles and Environments > Plant life histories
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Future of Food Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.
Initial Publication Date: January 11, 2018

Plant life histories

Plants need light, water, nutrients, an optimal temperature range, and carbon dioxide for growth. In a natural environment, the availability of plant resources is determined by the:

  • soil fertility, soil depth, and soil drainage
  • climate: the seasonal temperature and precipitation distribution
  • competition with other plants, herbivory by other organisms, and pathogens
  • the frequency of environmental disturbances (for example from fire, floods, and herbivory).

In some environments, nutrients, light, and water, are readily available and temperatures and the length of the growing season are sufficient for most annual crops to complete their lifecycle; we will refer to these as high resource environments for crop production. High resource environments tend to have soils that are fertile, well-drained, deep, and generally level, as well as growing seasons with temperatures and precipitation that are optimal for most plant growth. In general, in environments where competition for resources among plants is low, annual plants with more rapid growth rates tend to dominate (Lambers et al, 1998). Consequently, humans tend to cultivate annual plants with high growth rates in high resource environments.

By contrast, in low-resource environments plant growth may be limited due to soil features and/or climatic conditions. Soils may be sloped, with limited fertility, depth, and drainage; and/or the growing season may be short due to extended dry seasons and/or long winters (with temperatures at or below freezing). In natural ecosystems, resources can be limited due to competition among plants, such as in a forest or grassland where established plants limit the light, water, and nutrients for new seedlings. And in these environments where resources are limited, plants with slower growth rates and perennial life cycles tend to succeed (Lambers et al, 1998), and perennials are often the primary crops that humans cultivate in resource-limited environments.


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »