InTeGrate Modules and Courses >Renewable Energy and Environmental Sustainability > 4. Creating Electricity from Light
 Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The materials are free and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
How to Use »

New to InTeGrate?

Learn how to incorporate these teaching materials into your class.

  • Find out what's included with each module
  • Learn how it can be adapted to work in your classroom
  • See how your peers at hundreds of colleges and university across the country have used these materials to engage their students

How To Use InTeGrate Materials »
show Download
The instructor material for this module are available for offline viewing below. Downloadable versions of the student materials are available from this location on the student materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the instructor's materials

Download a zip file that includes all the web pages and downloadable files from the instructor's materials

4. Creating Electricity from Light

Benjamin Cuker, Hampton University,
Author Profile

This material was developed and reviewed through the InTeGrate curricular materials development process. This rigorous, structured process includes:

  • team-based development to ensure materials are appropriate across multiple educational settings.
  • multiple iterative reviews and feedback cycles through the course of material development with input to the authoring team from both project editors and an external assessment team.
  • real in-class testing of materials in at least 3 institutions with external review of student assessment data.
  • multiple reviews to ensure the materials meet the InTeGrate materials rubric which codifies best practices in curricular development, student assessment and pedagogic techniques.
  • review by external experts for accuracy of the science content.

This page first made public: Oct 31, 2017


This module introduces students to the various ways electricity is made from solar radiation. It provides a historical approach following advances over the last two centuries. Students see these technologies in the context of light resources and social circumstances. It includes well-developed hands-on activities.

Learning Goals

Students will be able to:

  1. Recount the fundamental principles of electricity to include the concepts of charge, current, voltage, resistance, and conduction.
  2. Contrast parallel and series circuits.
  3. Articulate how the photoelectric effect is harnessed in photovoltaic (PV) cells to create the flow of electrons.
  4. Distinguish between concentrated and dispersed solar-electric production and note the advantages and disadvantages of each.
  5. Evaluate the important parameters used for location of solar systems (latitude, slope, aspect, shading, and cloudiness).
  6. Determine economic cost and environmental impacts of PV technology.
  7. Differentiate between the different approaches using concentrated solar production to make electricity.
  8. Distinguish between grid-tied and stand-alone photovoltaic systems and the advantages and disadvantages of each.
  9. List and explain the limitations of using sunlight to produce electricity.

Students are expected to synthesize information, collect and analyze real-world experimental data, graph and understand the outcomes, and write a comprehensive report. The students also use published geoscience data.

Context for Use

This module is suitable for beginning to advanced college students, depending on the level of expectations set by the professor. It includes extensive reading and a well-developed hands-on laboratory component. The module should be useful in a variety of courses, from introductory to more advanced settings. It can be used as part of a green energy course, or as a unit in an environmental science class. It could also be used in an environmental science course, or a class devoted to renewable energy. The module is designed to work best with class sizes up to 20 students. A full 2 hours and 50 minutes will be needed to complete all aspects of the module. Some professors may wish to spread the activity over two or even three class meetings.

Description and Teaching Materials

We have prepared an extensive illustrated reading for your students. We suggest you read it in preparation for class.

Structuring your classroom time

1. Quiz & Discussion. If you are teaching this as the fourth module, the quiz questions should come from the preceding module, Thermal Energy From Light. After each student recites her/his question, pause for the appropriate time for their classmates to write answers. After all five questions have been completed, then ask five different students how they answered. When you and the class have reached consensus on what constitutes a correct answer, have the students mark their quizzes. The question-asking and the quiz-grading times offer opportunities for both mini-lectures to clarify a point and focus discussion on the topic. I suggest having the students write their answers on the opposite side of the paper where they wrote their quiz and discussion questions. That way you will have just one piece of paper with a grade on it from each student. Remember that you are the one in control of the questions. If students ask a poor question, you might ask them to offer an alternative question, or you may decide ad hoc to modify the question so it is better.

Here are examples of ways to handle poor questions. First for the quiz, Festus asks, "Define solar thermal collector." You might say, "OK Festus, it is important to know what a solar thermal collector is, but can you make the question deeper?" If Festus succeeds in improving the question, provide praise and go forward. If Festus cannot find his way to a better question, you could then say, "How about, what are the characteristics of a good solar thermal collector?" Or, "why do most solar hot water heaters have two circuits, a closed one with glycol and an open one for the water?" Sometimes students will come up with seemingly bizarre questions. Hesitate before rejecting those offerings, as it may be interesting to see where the classmates go with their answers. Warning: just because students offer questions, it does not mean they know correct responses themselves!

How to deal with student answers? Often the student asked to provide an answer will have it wrong, at least in part. Rather than providing the answer yourself, first ask other students for their responses. If nobody got it right you might consider asking for a substitute question.

After completing the quiz process, I suggest moving on to the discussion phase. The students should have brought four questions based upon the readings/videos assigned for the new material (that day's module). Use the instructor-regulated discussion pedagogy as explained in the course overview for conducting this exercise. The length of this phase will depend on how much time you need for the rest of that day's activities. If possible, each student should have had the opportunity to ask or answer a question during this exercise. As with the quizzes, rely first on other students to produce an acceptable answer, rather than simply jumping in yourself.

Scaffolding Learning

It is important to help the students use what they learned in the prior modules to build deeper understanding of this module. The student readings reference important concepts from the module on Electricity, Work, and Power. As the professor, you can help them make the connections. Point out that photovoltaic modules consist of many photo cells connected in series, which results in high voltages, as they learned in Module #1. Note that PV systems for houses are rated in kilowatts, (the amount of electricity they can produce) as learned in Module #1. Remind them that kilowatts and watts are units of work or power (energy per unit time). Note also that the previous module on Thermal Energy from Light informs the new module in various ways, i.e., the importance of proper orientation with respect to the path of the sun through the sky governs both solar thermal and photovoltaic systems. Also help students make the link between the second module,Using Wind to Do Work, and the current module, noting that these are the two dominant green technologies, and they both suffer from intermittent resource availability, and are both ultimately driven by energy from the sun. The opening quiz reinforces the scaffolding of learning. It forces the students to revisit the previous module twice, once during their studies when they review for the quiz and formulate the quiz questions, and again when they participate in the quiz process in class.


The flipped-classroom structure advocated for this course facilitates the development of metacognition by the students, directly involving them in the learning process. The use of student-generated questions for the quiz, discussion, and post-student presentation interactions is an important strategy in teaching the students about how they learn and understand the material. This is a big departure from the simple memorizing of terms and concepts that characterized much of their earlier education. You are teaching them a new way to approach their studies that, if mastered, will inform their approach to learning in general. Another metacognitive strategy used in the course is requiring the students to apply basic science concepts to understanding a technology, and then requiring them to think about the application of that technology in the real world. The portion of the exercise that has them look at light availability in their own state and apply that information to thinking about the efficacy of solar power moves along those lines. One of the hands-on exercises has students use solar panels to create electricity that causes the hydrolysis of water. That the students can see the streams of hydrogen and oxygen bubbles turning on and off with the manipulation of the panels with respect to sunlight provides a visual sense of the consequences of the flow of electrical current.

Systems Thinking

This module is a good place to teach the concept of flux, and about relationships that are not interactive, but essentially unidirectional. The students will work with photovoltaic cells that use the energy from the sun to produce electricity. Solar energy reaches Earth at nearly a constant rate over time. This flux of photons is intercepted by photovoltaic cells that facilitate the excitation of electrons and the production of electrical current. Ask the students if using solar cells can use up the energy from the sun. How is this different from using deposits of fossil fuels such as coal or petroleum to create electricity? The more fossil fuel that is used, the less there will be available to use in the future. And the reduced availability means it becomes more expensive. That is not the case with solar energy. In the long-run, using fossil fuel to make electricity is subject to negative feedback control. Although this is not the case for solar energy, it is possible to use up all the available space to place solar panels in a particular area. That is an example of a system reaching saturation.

2. Student Presentation. Remember you must give the students at least one week to prepare their PowerPoints! The next portion of the class should be devoted to one or more student presentations. Here are some suggested questions. We suggest that if you have Blackboard or a similar teaching aid, that you have your students post their PowerPoints in a discussion group so they may be reviewed by all the students. This activity involves peer instruction.

  1. The US federal government provides a tax incentive for individuals putting PV systems on their homes. Some states provide additional incentives. In addition, owners of such solar systems may earn money under the Solar Renewable Energy Certificates (SREC) system. Explain how the federal incentive works and its monetary value. Find a state that offers additional incentives and explain those. Explain how the SREC system works. If possible, present a case study of a home or business that took advantage of these opportunities. What does it cost these days to install a 5 kw PV system on a house? How long will it take to pay for itself based upon the electricity produced, state and federal incentives, and SREC sales?
  2. Use the latest information you can find to discuss how extensively solar energy is being used for the production of electricity in the United States and around the world. What portion of the United States' and the world's electricity now comes from solar? What are the shared characteristics of the places with the most use of solar energy? Be sure to consider geoscience, economics, policy and social science as you address this.
  3. Solar and wind are the two most important sources of renewable energy currently available. Explain in what ways these two renewable resources are similar and in what ways they differ from each other.
  4. Storing excess energy produced by photovoltaics or wind turbines will become a larger problem as both of these technologies become more prevalent. Discuss various schemes for storing such energy and use case studies if available.

3. Hands-on laboratory work. This activity will involve Cooperative Learning, as the students will work in groups to accomplish each task, and teaching with interactive demonstrations. A handout for the students (Microsoft Word 2007 (.docx) 83kB Jul12 17) helps to explains each activity. Spreadsheets Across the Curriculum will be useful to help the students understand graphing. It is suggested that students use Excel to do the calculations and present their work. Since Excel has gotten more complicated for students to use over the years, and since many versions of Excel exist, we suggest using YouTube as resource for tutorials. For example see: Basics of Graphing in Excel 2013 and Making Line Graphs with Excel 2010.

The laboratory work will require at least four small photovoltaic modules. It is convenient to use the solar battery maintainers sold at auto parts and marine stores. They are designed to produce about 18 volts and around 2 amps (example of a solar battery charger for purchase). Be sure to get the clip terminals so it will be easy to arrange the panels in circuits. You will need a volt-ohm meter and an ammeter.

This is the student handout prepared for the exercises: handout for PV lab (Microsoft Word 2007 (.docx) 83kB Jul12 17).

Teaching Notes and Tips

The students should first read the extensive reading created for the student section. That will enable them to better understand the hands-on work. The professor should supply the following items:

  • At least 4 small solar panels for making circuits
  • A Digital Multi Meter or an ammeter and a volt meter
  • A means of shading the panels (piece of cardboard)
  • Pencils sharpened at both ends
  • Glass beakers or jars
  • Tap water
The pencils serve as anode and cathode for the production of hydrogen gas. A complete hand-out for you and the students (Microsoft Word 2007 (.docx) 83kB Jul12 17) is included.

The students must read their assignment before class. They will need help clipping the PV panels together to make circuits, and clipping on the the pencils for the hydrolysis experiment. Point out that they are splitting H2O, so the bubble production will be twice that for H2 as it will be for O2. Avoid the temptation to collect each gas in an inverted test tube and then recombine to make a small explosion. This is rocket fuel!

Supervise the student groups so that one person does not dominate the activity. The hands-on work is best done on a sunny day, but will work less dramatically when overcast.


Summative Learning Assessments for Course and InTeGrate Goals

The assessment methods for this module can be found on the course assessment page.

Pre/Post Test Questions:

References and Resources

Already used some of these materials in a course?
Let us know and join the discussion »

Considering using these materials with your students?
Get pointers and learn about how it's working for your peers in their classrooms »

These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »