Using 3D Modeling to Promote Design Thinking and Inquiry in an Introductory Geology Lab
Friday
3:00pm-4:00pm
Beren Auditorium
Poster Session Part of
Friday Poster Session
Session Chair
Megan Plenge, University of North Carolina at Chapel Hill
Introductory students rarely get the opportunity to engage in one of the most challenging and fundamental steps in scientific methodology: developing scientific research questions, formulating hypotheses, and devising a research plan to test their hypothesis.
To solve this problem, UNC-Chapel Hill's introductory geology laboratories have been piloting a semester-long project in which students do just this. Student groups work through the experimental design process, each group coming up with a question, hypothesis, and methods for testing their hypothesis and analyzing data they collect. The project requires them to design and create a model to use in their research process. In some cases, the modeled object will be essential to the collection of data. One example is a volcano that students are 3D printing so that they can determine how magma flow paths vary with viscosity. Other models may be generated to illustrate a conclusion that students have come to after analyzing data; for example, one group is modeling the predicted saturated thickness of the Ogallala Aquifer in 50 years using today's discharge and recharge rates.
UNC-Chapel Hill has several makerspaces on campus: spaces that provides 3D printing, laser cutting, and other "making" supplies and expertise to allow students to design and construct physical objects. Students are encouraged to use the makerspace to generate the model they incorporate into their experimental design and are given resources to help them develop their models. For example, many students use TouchTerrain, a web-tool that allows students to create 3D-printable models topographic features (touchterrain.geol.iastate.edu).
The project is broken up into several parts, including a project proposal, peer review, model design, and a write-up and oral presentation of their experiment. The poster will show sample rubrics, survey data from students who have completed the project, and products including pictures and models generated by students.
To solve this problem, UNC-Chapel Hill's introductory geology laboratories have been piloting a semester-long project in which students do just this. Student groups work through the experimental design process, each group coming up with a question, hypothesis, and methods for testing their hypothesis and analyzing data they collect. The project requires them to design and create a model to use in their research process. In some cases, the modeled object will be essential to the collection of data. One example is a volcano that students are 3D printing so that they can determine how magma flow paths vary with viscosity. Other models may be generated to illustrate a conclusion that students have come to after analyzing data; for example, one group is modeling the predicted saturated thickness of the Ogallala Aquifer in 50 years using today's discharge and recharge rates.
UNC-Chapel Hill has several makerspaces on campus: spaces that provides 3D printing, laser cutting, and other "making" supplies and expertise to allow students to design and construct physical objects. Students are encouraged to use the makerspace to generate the model they incorporate into their experimental design and are given resources to help them develop their models. For example, many students use TouchTerrain, a web-tool that allows students to create 3D-printable models topographic features (touchterrain.geol.iastate.edu).
The project is broken up into several parts, including a project proposal, peer review, model design, and a write-up and oral presentation of their experiment. The poster will show sample rubrics, survey data from students who have completed the project, and products including pictures and models generated by students.