Teaching Activities

These teaching activities have been submitted via a number of projects including On the Cutting Edge and may be useful in teaching Environmental Geology.



Current Search Limits:

Results 21 - 30 of 238 matches

Understanding Earthquakes: Comparing seismograms
Jennifer Pickering
Introductory lesson that contextualizes how multiple instruments provide a more complete picture on an event.

Lesson 2: My Water Footprint (High School)
Kai Olson-Sawyer, GRACE Communications Foundation
This lesson centers on a deeper exploration of the water footprint associated with food. Students learned in Lesson 1 that virtual water, especially as it relates to food, typically makes up the majority of their ...

Frequency of Large Earthquakes
Jennifer Pickering
Using the IRIS Earthquake Browser tool, students gather data to support a claim about how many large (Mw 8+) earthquakes will happen globally each year. This activity provides scaffolded experience downloading data and manipulating data within a spreadsheet.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Groundwater Contamination Prediction
Nicole LaDue, Northern Illinois University
× Formative assessment questions using a classroom response system ("clickers") can be used to reveal students' spatial understanding. Students are shown this diagram and told, "A storm ...

Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Reading an Earthquake Seismogram
Jennifer Pickering
Introductory lesson that deconstructs the information that can be gleaned from a single seismogram.

Understanding Doppler radar radial velocity fields
Aryeh Drager, University of Nebraska at Lincoln
This activity is designed to help students learn how to interpret Doppler radial velocity radar images with meteorological applications, as well as giving students a chance to practice their spatial skills.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Getting Started with the ShakeNet Data Portal
Jennifer Pickering
Teacher guide and tutorial for using the RaspberryShake ShakeNet data portal.

Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics
Shelley E Olds, EarthScope Consortium
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Earthquake Intensity
Jennifer Pickering
Introductory lesson that compares ShakeMaps between earthquakes in the same location but different magnitudes, and earthquakes of the same magnitude but different depths, to acquaint learners to the fundamental controls on intensity of shaking felt during an event: magnitude and distance from the earthquake source.