Macrosystems ecology and ecological forecasting
Macrosystems ecology is the study of ecological dynamics at multiple interacting spatial and temporal scales (e.g., Heffernan et al. 2014). For example, global climate change can interact with local land-use activities to control how an ecosystem changes over the next decades. Macrosystems ecology recently emerged as a new sub-discipline of ecology to study ecosystems and ecological communities around the globe that are changing at an unprecedented rate because of human activities (IPCC 2013). The responses of ecosystems and communities are complex, non-linear, and driven by feedbacks across local, regional, and global scales (Heffernan et al. 2014). These characteristics necessitate novel approaches for making predictions about how systems may change to improve both our understanding of ecological phenomena as well as inform resource management.
Forecasting is a tool that can be used for understanding and predicting macrosystems dynamics. To anticipate and prepare for increased variability in populations, communities, and ecosystems, there is a pressing need to know the future state of ecological systems across space and time (Dietze et al. 2018). Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Ecological forecasts are a powerful test of the scientific method because ecologists make a hypothesis of how an ecological system works; embed their hypothesis in a model; use the model to make a forecast of future conditions; and then when observations become available, assess the accuracy of their forecast, which indicates if their hypothesis is supported or needs to be updated. Forecasts that are effectively communicated to the public and managers will be most useful for aiding decision-making. Consequently, macrosystems ecologists are increasingly using ecological forecasts to predict how ecosystems are changing over space and time. Our interdisciplinary team is developing flexible classroom modules that Each module.
The macrosystems modules introduce undergraduate students to the core concepts of macrosystems ecology and ecological forecasting. They utilize long-term, high-frequency, and sensor-based datasets from diverse sources, including the Global Lakes Ecological Observatory Network, the United States Geological Survey, the Long Term Ecological Research Network, and the National Ecological Observatory Network. Each module can be adapted for use in introductory, intermediate, and advanced courses in ecology and related fields, in order to enhance students' understanding of macrosystems ecology and ecological forecasting, their computational skills, and their ability to conduct inquiry-based studies.