Topics Show all
Data
15 matchesData-Driven versus Concept-Driven Animations
I now realize that a similar distinction can be drawn among scientific animations. We can think of "concept-driven animations," and "data-driven animations." More
Learning to Learn from Data
Scientists learn from data. Learning to learn from data is obviously an essential aspect of the education of a future scientist.
These days, however, many other kinds of people also learn from data--including business people, investors, education leaders, and people who care about pollution, disease, or the quality of their local schools. My daily newspaper is rich in data-based graphs and maps--and so is the newsletter from my local library. These days, learning to learn from data is a necessary part of everyone's education.
However, learning to learn from data is not a typical part of everyone's education. This post explores what might be required to construct a thorough learning progression for learning from Earth Science data, beginning where a good elementary school leaves off and carrying on through to what an upper level college course or adult job might demand. More
Multiple lines of reasoning in support of one claim
Earth Science, in my experience, tends not to work this way. Instead, many of the most bold and important claims in Earth Science have been built from many different forms of data and observations. More
Astronomers' Tricks with Light
This semesters' version spans four disciplines: Brain & Behavior (Neuroscience), Astronomy, Earth Science, and Biodiversity. The topics are intended to encompass material that most students would not have studied in high school, so that every student finds something interesting and challenging in the course. A side effect of this course design is that no single faculty member knows all or even most of the material. The College has tried hard to establish a supportive community of practice among the nineteen seminar leaders, and sharing ideas across disciplines has been one of the more rewarding aspects of teaching the course.
The metamessage that is supposed to be accumulating across the four topics is "Scientific Habits of Mind," how scientists think and learn. The course materials never use the term "Epistemology," but that is in large part what this course is about--how scientists know what they know. I've been using the Claims/Evidence/Reasoning mantra that I picked up from the IQWST curriculum developers to articulate the elements that students need to incorporate into a scientific explanation. I have been stunned to realize how different is the nature of evidence and reasoning in the four disciplines we are teaching. More
Temporal Reasoning in Geosciences
Claim, Evidence, Reasoning. One school of thought in science education places great emphasis on fostering students' ability to articulate a claimabout an aspect of the world, back up that claim with evidence, and construct a coherent line of reasoning to show that the evidence does indeed support the claim.
In geology, the evidence often has to do with the timing, or sequence, or rates, of events in the past. Dozens of geologist-lifetimes have been invested in figuring out to constrain what happened at what time in earth history. And then thousands of geologist-lifetimes have been invested in using these techniques to attach dates to bits of rock or mud. Geology students spend entire courses learning to think about dates, times, and ages, via fossils, via magnetic signature of rocks and mud, via stable isotope ratios, via unstable isotope ratios, via geometry of cross-cutting relationships.
So what is the big deal about dates and ages? Why spend so much time and effort on these factoids? More
